Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium alkene complexes

The titanium alkene complex Cp2Ti( ) -CH2=CFl2) can be prepared in greater than 80% yield by the Na/Hg reduction of Cp2TiCl2 in toluene under VOOtorr of ethylene (equation 51), or in nearly quantitative yield by the addition of ethylene to [Cp2Ti]2(/x-N2) (equation 52). Alternatively, treatment... [Pg.4928]

A chiral titanium(IV) complex has also been used by Wada et al. for the intermole-cular cycloaddition of ( )-2-oxo-l-phenylsulfonyl-3-alkenes 45 with enol ethers 46 using the TADDOL-TiX2 (X=C1, Br) complexes 48 as catalysts in an enantioselective reaction giving the dihydropyrans 47 as shown in Scheme 4.32 [47]. The reaction depends on the anion of the catalyst and the best yield and enantioselectivity were found for the TADDOL-TiBr2 up to 97% ee of the dihydropyrans 47 was obtained. [Pg.178]

Several titanium(IV) complexes are efficient and reliable Lewis acid catalysts and they have been applied to numerous reactions, especially in combination with the so-called TADDOL (a, a,a, a -tetraaryl-l,3-dioxolane-4,5-dimethanol) (22) ligands [53-55]. In the first study on normal electron-demand 1,3-dipolar cycloaddition reactions between nitrones and alkenes, which appeared in 1994, the catalytic reaction of a series of chiral TiCl2-TADDOLates on the reaction of nitrones 1 with al-kenoyloxazolidinones 19 was developed (Scheme 6.18) [56]. These substrates have turned out be the model system of choice for most studies on metal-catalyzed normal electron-demand 1,3-dipolar cycloaddition reactions of nitrones as it will appear from this chapter. When 10 mol% of the catalyst 23a was applied in the reaction depicted in Scheme 6.18 the reaction proceeded to give a yield of up to 94% ee after 20 h. The reaction led primarily to exo-21 and in the best case an endo/ exo ratio of 10 90 was obtained. The chiral information of the catalyst was transferred with a fair efficiency to the substrates as up to 60% ee of one of the isomers of exo3 was obtained [56]. [Pg.226]

In the envisaged titanium oxo complex, the Ti atom is side-bound to the peroxy moiety (02H), consistent with all the spectroscopic results mentioned in Section III in Scheme 27, between the two O atoms that are side-bound to Ti4+, the O atom attached to both the Ti and H atoms is expected to be more electrophilic than the O atom attached to only the Ti atom and is likely to be the site of nucleophilic attack by the alkene double bond. The formation of the Ti-OH group (and not the titanyl, Ti=0, as proposed by Khouw et al. (221)) after the epoxidation and its subsequent condensation with Si-OH to regenerate the Ti-O-Si links had been observed (Section III.B) by FTIR spectroscopy by Lin and Frei (133). Because this is a concerted heterolytic cleavage of the 0-0 bond, high epoxide selectivity and retention of stereochemistry may be expected, as indeed has been observed experimentally (204). [Pg.161]

In Section 9.2, intermolecular reactions of titanium—acetylene complexes with acetylenes, allenes, alkenes, and allylic compounds were discussed. This section describes the intramolecular coupling of bis-unsaturated compounds, including dienes, enynes, and diynes, as formulated in Eq. 9.49. As the titanium alkoxide is very inexpensive, the reactions in Eq. 9.49 represent one of the most economical methods for accomplishing the formation of metallacycles of this type [1,2]. Moreover, the titanium alkoxide based method enables several new synthetic transformations that are not viable by conventional metallocene-mediated methods. [Pg.342]

In the last decade an enormous revival of late transition catalysts for the polymerisation of alkenes has taken place [45] (remember that the first discovery of Ziegler for ethene polymerisation also concerned nickel and not titanium). The development of these catalysts is due to Brookhart in collaboration with DuPont (Figure 10.28) [46], Detailed low-temperature NMR studies have revealed the mechanism of the reaction [47], Interestingly, the resting state of the catalyst is the ethene-metal-alkyl complex and not the metal-alkyl complex as is the case for the ETM catalysts. For ETM catalysts the alkene complex intermediates are never observed. Thus, the migratory insertion is the rate-determining step (the turnover limiting step , in Brookhart s words) and the reaction rate is independent of the ethene concentration. [Pg.222]

The expected intermediate for the metathesis reaction of a metal alkylidene complex and an alkene is a metallacyclobutane complex. Grubbs studied titanium complexes and he found that biscyclopentadienyl-titanium complexes are active as metathesis catalysts, the stable resting state of the catalyst is a titanacyclobutane, rather than a titanium alkylidene complex [15], A variety of metathesis reactions are catalysed by the complex shown in Figure 16.8, although the activity is moderate. Kinetic and labelling studies were used to demonstrate that this reaction proceeds through the carbene intermediate. [Pg.342]

Table 3.3. Cyclopropanation of alkenes with titanium carbene complexes generated in situ [33],... Table 3.3. Cyclopropanation of alkenes with titanium carbene complexes generated in situ [33],...
The species shown in Schemes 8.1 and 8.2 do not contain vacant coordination sites suitable for binding weakly donating ligands such as alkenes. Even in Breslow s zwitterionic intermediate (Scheme 8.1) the nature of the metal-ethene interaction is unclear alkenes do not bind to the LUMO of 16-electron complexes CP2MCI2 (M = Ti, Zr, Hf) or their alkyl derivatives. The isolation by Eisch in 1985 of a cationic titanium vinyl complex [Cp2TiC(Ph)=C(Me)SiMe3], apparently formed by insertion of an alkyne into a putative [Cp2TiMe] intermediate [29], raised the... [Pg.313]

Reduction of alkenes to alcohols.3 The combination of TiCI4 and NaBH4 in DMF produces a low-valent titanium-borane complex that converts alkcncs to alcohols in which the hydroxy group is introduced by an anti-Markovnikoff addition. [Pg.404]

The initial coordination of reactants has indeed been proposed to explain the selective oxidation of alkenes in the presence of saturated hydrocarbons. It was argued that, owing to the hydrophobic nature of titanium silicates, the concentration of both hydrocarbons inside the catalyst pores is relatively high and hence the alkenes must coordinate to TiIv. Consequently, the titanium peroxo complex will be formed almost exclusively on Tilv centers that already have an alkene in their coordination sphere, and will therefore oxidize this alkene rather than an alkane which may be present in the catalyst (Huybrechts et al., 1992). Objections to this proposal are based on the fact that the intrinsically higher reactivity of alkenes with respect to saturated hydrocarbons is sufficient to account for the selectivity observed (Clerici et al., 1992). But coordination around the titanium center of an alcohol molecule, particularly methanol, is nevertheless proposed to explain the formation of acidic species, as was previously discussed. In summary, coordination around Tiiv could play a more important role than it does in solution chemistry as a consequence of the hydrophobicity of the environment where the reactions take place. [Pg.325]

Bis(adamantylimido) compounds, with monomeric chromium(VI) complexes, 5, 348 Bis(alkene) complexes conjugated, Rh complexes, 7, 214 mononuclear Ru and Os compounds, 6, 401 -02 in Ru and Os half-sandwich rj6-arenes, 6, 538 with tungsten carbonyls and isocyanides, 5, 685 Bis(u-alkenylcyclopentadienyl) complexes, with Ti(II), 4, 254 Bis(alkoxide) nitrogen-donor complexes, with Zr(IV), 4, 805 Bis(alkoxide) titanium alkynes, in cross-coupling, 4, 276 Bis(alkoxo) complexes, with bis-Cp Ti(IV), 4, 588 Bis[alkoxy(alkylamino)carbene]gold complexes, preparation, 2, 288... [Pg.62]

Density functional theory studies arene chromium tricarbonyls, 5, 255 beryllium monocyclopentadienyls, 2, 75 chromium carbonyls, 5, 228 in computational chemistry, 1, 663 Cp-amido titanium complexes, 4, 464—465 diiron carbonyl complexes, 6, 222 manganese carbonyls, 5, 763 molybdenum hexacarbonyl, 5, 392 and multiconfiguration techniques, 1, 649 neutral, cationic, anionic chromium carbonyls, 5, 203-204 nickel rj2-alkene complexes, 8, 134—135 palladium NHC complexes, 8, 234 Deoxygenative coupling, carbonyls to olefins, 11, 40 (+)-4,5-Deoxyneodolabelline, via ring-closing diene metathesis, 11, 219... [Pg.93]

Most titanium(IV) alkyls tend to be reduced by aluminum alkyls in a complicated sequence of reactions accompanied by evolution of alkane and alkene. The catalytic activity of the bis(cyclopentadienyl)titanium-aluminum complexes is associated with the titanium alkyl. Hence, it is very interesting to investigate the mechanism of any reductive reaction. In order to study side reactions in the absence of polymerization, highly alkylated systems completely free of halogen are preferred. Moreover, reduction takes place much faster, the higher the alkyl-group content of the added aluminum alkyl. [Pg.132]

The workers proposed that alkyl hydroperoxides and aqueous hydrogen peroxide interact with TS-1 in a similar manner, forming titanium alkyl peroxo complexes and titanium peroxo complexes, respectively. However, the titanium alkyl peroxo complexes were not active because the substrate could not enter the void due to steric effects. Consequently, no activity was possible for either alkane hydroxylation or alkene epoxidation. Comparison with Ti02-Si02/alkyl hydroperoxide for alkane and alkene oxidation indicated that this material was active because the oxidation took place on the surface and not in the pores. Figures 4.4 and 4.5 show the possible mechanisms in operation for the oxidation of alkenes and alkanes with a TS-1/hydrogen peroxide system. [Pg.186]

The work of Davis was, however, unable to distinguish which oxygen was attacked on the titanium peroxo complex when the alkene co-ordinates. Therefore, Neurock and Manzer conducted a theoretical study of the mechanism of alkene epoxidation using TS-1 with aqueous hydrogen peroxide.32 The workers concluded that their calculations to predict both the structure and relative bands in the IR spectra for TS-1 were in good agreement with experimental data. The calculations indicated that the oxygen closest to the titanium centre was the active site for alkene attack. The result was the direct formation of... [Pg.186]

Titanocene(n) species promote the conversion of unsaturated thioacetals to cyclic compounds. This cyclization proceeds with the loss of the terminal alkene carbon. Treatment of the thioacetal 83 with the low-valent titanium species Cp2Ti[P(OEt)3]2 (3 equiv) in refluxing THF afforded benzoxocines 86 and 87 (by isomerization of 86) in 61% yield (Scheme 14) <1999SL354>. Using 4 equiv of the titanocene(n), the yield is higher (70%) but the selectivity is lower (the ratio 86 87 becomes 82 18). The mechanism or the reaction probably involves the formation of the titanium carbene complex 84, its intramolecular reaction with the double bond to form titanocyclobutane 85, and the subsequent elimination of methylidenetitanocene <1999SL354>. [Pg.68]


See other pages where Titanium alkene complexes is mentioned: [Pg.398]    [Pg.398]    [Pg.410]    [Pg.527]    [Pg.527]    [Pg.18]    [Pg.18]    [Pg.398]    [Pg.398]    [Pg.410]    [Pg.339]    [Pg.398]    [Pg.398]    [Pg.410]    [Pg.527]    [Pg.527]    [Pg.18]    [Pg.18]    [Pg.398]    [Pg.398]    [Pg.410]    [Pg.339]    [Pg.434]    [Pg.1238]    [Pg.237]    [Pg.306]    [Pg.117]    [Pg.513]    [Pg.321]    [Pg.475]    [Pg.22]    [Pg.186]    [Pg.122]    [Pg.8]    [Pg.112]    [Pg.321]    [Pg.323]    [Pg.331]    [Pg.577]    [Pg.236]   
See also in sourсe #XX -- [ Pg.714 ]




SEARCH



Alkenes titanium

Complexes alkenes

Titanium complexe

Titanium complexes

© 2024 chempedia.info