Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Attack of alkene

There seems to be a direct attack of alkene at the oxometal, with C-0 bond formation (Figure 6.2). [Pg.89]

Kinetic experiments show that the rate of thermal decomposition of 4-benzyl-5-tosylimino-AM,2,3,4-thiatriazoline is not influenced by the presence of enamines (the first-order rate constant is 42 x 10 5 s l in CC14 at 60°) excluding attack of alkene on the thiatriazoline with simultaneous loss of nitrogen.65 Instead, this result indicates formation of a discrete intermediate, which apparently is either the thiaziridine (19) and/or the 1,3-dipolar species (20) [Eq. (24)]. [Pg.171]

Oxo(/erf-alkylimido)osmium complexes are utilized in the diastereoselective oxyamination and diamination of alkenes. A mechanism involving nucleophilic attack of alkene to osmium and formation of a four-membered cyclic intermediate has been proposed38, but the [3 + 2] cycloaddition mechanism has also been suggested by quantum chemical calculations on models for hex-2-enopyranosides39. [Pg.864]

This cycle is probably an oversimplification. It has been suggested from kinetic studies that HCo(CO)j(RCH=CHj) arises via attack of alkene on the 17-electron radical Co(CO), which is labile to substitution. It is possible that HCo(CO) is responsible for releasing the aldehyde in the final step, but there is no direct evidence for this yet. Probably several concurrent pathways are followed in actual hydroformylation. [Pg.389]

The lowest-lying excited state of ketones most often corresponds to a o 7t c=o transition. The maximum of this band is around 280 nm with simple aldehydes or ketones and is shifted to the red for conjugated or aryl derivatives. As hinted above, the unpaired electron on the hq orbital gives to these states electrophilic properties similar to those of alkoxy radicals, and indeed the observed chemistry is similar in the two cases. Typical reactions are a-fragmentation, inter- or intramolecular (from the easily accessible y position) hydrogen abstraction and attack of alkenes (finally resulting in a formal 2h-2 cycloaddition to give an oxetane, the Paterno-Btichi reaction). [Pg.95]

Pd(II) compounds coordinate to alkenes to form rr-complexes. Roughly, a decrease in the electron density of alkenes by coordination to electrophilic Pd(II) permits attack by various nucleophiles on the coordinated alkenes. In contrast, electrophilic attack is commonly observed with uncomplexed alkenes. The attack of nucleophiles with concomitant formation of a carbon-palladium r-bond 1 is called the palladation of alkenes. This reaction is similar to the mercuration reaction. However, unlike the mercuration products, which are stable and isolable, the product 1 of the palladation is usually unstable and undergoes rapid decomposition. The palladation reaction is followed by two reactions. The elimination of H—Pd—Cl from 1 to form vinyl compounds 2 is one reaction path, resulting in nucleophilic substitution of the olefinic proton. When the displacement of the Pd in 1 with another nucleophile takes place, the nucleophilic addition of alkenes occurs to give 3. Depending on the reactants and conditions, either nucleophilic substitution of alkenes or nucleophilic addition to alkenes takes place. [Pg.21]

Typical nucleophiles known to react with coordinated alkenes are water, alcohols, carboxylic acids, ammonia, amines, enamines, and active methylene compounds 11.12]. The intramolecular version is particularly useful for syntheses of various heterocyclic compounds[l 3,14]. CO and aromatics also react with alkenes. The oxidation reactions of alkenes can be classified further based on these attacking species. Under certain conditions, especially in the presence of bases, the rr-alkene complex 4 is converted into the 7r-allylic complex 5. Various stoichiometric reactions of alkenes via 7r-allylic complex 5 are treated in Section 4. [Pg.21]

The attack of OH obeys the Markovnikov rule. Higher alkenes are oxidized to ketones and this unique oxidation of alkenes has extensive synthetic appli-cations[23]. The oxidation of propylene affords acetone. Propionaldehyde is... [Pg.22]

Alkenes coordinated by Pd(II) are attacked by carbon nucleophiles, and carbon-carbon bond formation takes place. The reaction of alkenes with carbon nucleophiles via 7r-allylpalladium complexes is treated in Section 3.1. [Pg.47]

Facile reaction of a carbon nucleophile with an olefinic bond of COD is the first example of carbon-carbon bond formation by means of Pd. COD forms a stable complex with PdCl2. When this complex 192 is treated with malonate or acetoacetate in ether under heterogeneous conditions at room temperature in the presence of Na2C03, a facile carbopalladation takes place to give the new complex 193, formed by the introduction of malonate to COD. The complex has TT-olefin and cr-Pd bonds. By the treatment of the new complex 193 with a base, the malonate carbanion attacks the cr-Pd—C bond, affording the bicy-clo[6.1,0]-nonane 194. The complex also reacts with another molecule of malonate which attacks the rr-olefin bond to give the bicyclo[3.3.0]octane 195 by a transannulation reaction[l2.191]. The formation of 194 involves the novel cyclopropanation reaction of alkenes by nucleophilic attack of two carbanions. [Pg.47]

The alkylpalladium intermediate 198 cyclizes on to an aromatic ring, rather than forming a three-membered ring by alkene insertion[161], Spirocyclic compounds are easily prepared[l62]. Various spiroindolines such as 200 were prepared. In this synthesis, the second ring formation involves attack of an alkylpalladium species 199 on an aromatic ring, including electron-rich or -poor heteroaromatic rings[l6.5]. [Pg.157]

The formation of 1-and 2-aIkenes can be understood by the following mechanism. In the presence of formate anion, the 7r-allylpalladium complex 572 is converted into the 7r-allylpalladium formate 573. The most interesting feature is the attack of the hydride from formate to the more substituted side of the (T-allylic system by the cyclic mechanism shown by 574 to form the 1-alkene 575[367]. The decarboxylation and hydride transfer should be a concerted... [Pg.367]

Desulfonylation of equally substituted allylic sulfones with NaBH4 and LiBHEt3 usually yields a mixture of regioisomeric alkenes[406,407]. However, the regioselective attack of the less substituted side of the unsymme-trically substituted allylic system with LiEtjBH has been utilized for the removal of the allylic sulfone group in synthesis of the polyprenoid 658[408],... [Pg.379]

Another reaction occurs by the attack of a soft nucleophile at the central carbon to form the 7r-allylpalladium complex 7, which undergoes further reaction with the nucleophile typical of rr-allylpalladium complexes to form the alkene 8,... [Pg.454]

Butyrolactones are prepared by intramolecular reaction of haloallylic 2-alkynoates. The a-chloromethylenebutyrolactone 301 is prepared by the intramolecular reaction of300[150,151]. 4 -Hydroxy-2 -alkenyl 2-alkynoates can be used instead of haloallylic 2-alkynoates, and in this reaction, Pd(II) is regenerated by elimination of the hydroxy group[152]. As a related reaction, the q-(chloromethylene)-7-butyrolactone 304 is obtained from the cinnamyl 2-alkynoate 302 in the presence of LiCl and CuCbflSS]. Isohinokinin (305) has been synthesized by this reaction[l 54]. The reaction is explained by chloro-palladation of the triple bond, followed by intramolecular alkene insertion to generate the alkylpalladium chloride 303. Then PdCb is regenerated by attack of CuCb on the alkylpalladium bond as a key step in the catalytic reaction. [Pg.505]

In the carbonylation of trans,trans,cis-CDT, the trans double bond is attacked preferentially to give the monoester 10, and then the diester 11. Attack of the cis double bond to give the triester is slow[15]. Only the C-16 alkene was carbonylated regio- and stereoselectively to give the Ibo-carboxy-late 12 by carbonylation of the C-5 and C-16 unsaturaied steroid[]6]. [Pg.513]

Step 1 A molecule of borane (BH3) attacks the alkene Electrons flow from the 7C orbital of the alkene to the 2p orbital of boron A 7C complex is formed... [Pg.253]

You have just seen that cyclic halonmm ion intermediates are formed when sources of electrophilic halogen attack a double bond Likewise three membered oxygen containing rings are formed by the reaction of alkenes with sources of electrophilic oxygen... [Pg.260]

Both parts of the Lapworth mechanism enol formation and enol halogenation are new to us Let s examine them m reverse order We can understand enol halogenation by analogy to halogen addition to alkenes An enol is a very reactive kind of alkene Its carbon-carbon double bond bears an electron releasing hydroxyl group which makes it electron rich and activates it toward attack by electrophiles... [Pg.758]

The enzyme catalyzed reactions that lead to geraniol and farnesol (as their pyrophosphate esters) are mechanistically related to the acid catalyzed dimerization of alkenes discussed m Section 6 21 The reaction of an allylic pyrophosphate or a carbo cation with a source of rr electrons is a recurring theme m terpene biosynthesis and is invoked to explain the origin of more complicated structural types Consider for exam pie the formation of cyclic monoterpenes Neryl pyrophosphate formed by an enzyme catalyzed isomerization of the E double bond m geranyl pyrophosphate has the proper geometry to form a six membered ring via intramolecular attack of the double bond on the allylic pyrophosphate unit... [Pg.1089]

Particles are the major cause of the ha2e and the brown color that is often associated with smog. The three most important types of particles produced in smog are composed of organics, sulfates, and nitrates. Organic particles are formed when large VOC molecules, especially aromatics and cycHc alkenes, react with each other and form condensable products. Sulfate particles are formed by a series of reactions initiated by the attack of OH on SO2 in the gas phase or by Hquid-phase reactions. Nitrate particles are formed by... [Pg.372]

Dia ene deductions. Olefins, acetylenes, and azo-compounds are reduced by hydrazine in the presence of an oxidizing agent. Stereochemical studies of alkene and alkyne reductions suggest that hydrazine is partially oxidized to the transient diazene [3618-05-1] (diimide, diimine) (9) and that the cis-isomer of diazene is the actual hydrogenating agent, acting by a concerted attack on the unsaturated bond ... [Pg.277]

Sulfur trioxide reactivity can also be moderated through the use of SO adducts. The reactivity of such complexes is inversely proportional to their stabihty, and consequentiy they can be selected for a wide variety of conditions. Whereas moderating SO reactivity by adducting agents is generally beneficial, the agents add cost and may contribute to odor and possible toxicity problems in derived products. CeUulosic material has been sulfated with SO.—trimethyl amine adduct in aqueous media at 0 to 5°C (16). Sulfur trioxide—triethyl phosphate has been used to sulfonate alkenes to the corresponding alkene sulfonate (17). Sulfur trioxide—pyridine adduct sulfates oleyl alcohol with no attack of the double bond (18). [Pg.77]

The most important oxirane syntheses are by addition of an oxygen atom to a carbon-carbon double bond, i.e. by the epoxidation of alkenes, and these are considered in Section 5.05.4.2.2. The closing, by nucleophilic attack of oxygen on carbon, of an OCCX moiety is dealt with in Section 5.05.4.2.1 (this approach often uses alkenes as starting materials). Finally, oxirane synthesis from heterocycles is considered in Section 5.05.4.3 one of these methods, thermal rearrangement of 1,4-peroxides (Section 5.05.4.3.2), has assumed some importance in recent years. The synthesis of oxiranes is reviewed in (B-73MI50500) and (64HC(19-1U). [Pg.114]

Electrophilic attack on the sulfur atom of thiiranes by alkyl halides does not give thiiranium salts but rather products derived from attack of the halide ion on the intermediate cyclic salt (B-81MI50602). Treatment of a s-2,3-dimethylthiirane with methyl iodide yields cis-2-butene by two possible mechanisms (Scheme 31). A stereoselective isomerization of alkenes is accomplished by conversion to a thiirane of opposite stereochemistry followed by desulfurization by methyl iodide (75TL2709). Treatment of thiiranes with alkyl chlorides and bromides gives 2-chloro- or 2-bromo-ethyl sulfides (Scheme 32). Intramolecular alkylation of the sulfur atom of a thiirane may occur if the geometry is favorable the intermediate sulfonium ions are unstable to nucleophilic attack and rearrangement may occur (Scheme 33). [Pg.147]


See other pages where Attack of alkene is mentioned: [Pg.23]    [Pg.7]    [Pg.26]    [Pg.72]    [Pg.22]    [Pg.40]    [Pg.287]    [Pg.400]    [Pg.22]    [Pg.29]    [Pg.1126]    [Pg.359]    [Pg.287]    [Pg.65]    [Pg.23]    [Pg.7]    [Pg.26]    [Pg.72]    [Pg.22]    [Pg.40]    [Pg.287]    [Pg.400]    [Pg.22]    [Pg.29]    [Pg.1126]    [Pg.359]    [Pg.287]    [Pg.65]    [Pg.33]    [Pg.62]    [Pg.96]    [Pg.156]    [Pg.460]    [Pg.531]    [Pg.36]    [Pg.83]    [Pg.84]    [Pg.116]    [Pg.123]   
See also in sourсe #XX -- [ Pg.400 ]




SEARCH



Alkenes attack

External attack of nucleophiles on alkene coordinated to electrophilic metal complexes

© 2024 chempedia.info