Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thin stabilization

If a work has to be maintained as an original because of its value, even if the paper is seriously damaged, then deaddification is not suffident In these cases a stabilization of the paper is necessary. This can only be achieved be preservational techniques like wet treatment, leaf casting (if parts are missing), application of thin stabilizing material [39] or paper spHtting. [Pg.490]

In this chapter, when reporting on copper nanomaterials, we will implicitly focus on the nanostructure main part-the core. The existence of a relatively thin stabilizing shell (composed of organic stabilizers, copper oxide or hydroxide, chemi- or physisorbed solvent molecules, etc.) surrounding the NP core will be accepted as a natural consequence of both the size and the chemical reactivity of the copper phase. [Pg.4]

Imaging plates are exposed similar to radiographic films. They are read out by a LASER-scanner to a digital image without any developing process. After optical erasing of the virtual picture the same IP can be used cyclic up to more than 1000 times. The life time is limited by the mechanical stability of the IP s. An IP consists of a flexible polymer carrier which is coated with the sensitive layer. This layer is covered with a thin transparent protective foil. [Pg.468]

The importance of the thin film between the mineral particle and the air bubble has been discussed in a review by Pugh and Manev [74]. In this paper, modem studies of thin films via SFA and interferometry are discussed. These film effects come into play in the stability of foams and froths. Johansson and Pugh have studied the stability of a froth with particles. Small (30-/ m), moderately hydrophobic 6c = 65°) quartz particles stabilized a froth, while more hydrophobic particles destabilized it and larger particles had less influence [75]. [Pg.476]

The preceding treatment relates primarily to flocculation rates, while the irreversible aging of emulsions involves the coalescence of droplets, the prelude to which is the thinning of the liquid film separating the droplets. Similar theories were developed by Spielman [54] and by Honig and co-workers [55], which added hydrodynamic considerations to basic DLVO theory. A successful experimental test of these equations was made by Bernstein and co-workers [56] (see also Ref. 57). Coalescence leads eventually to separation of bulk oil phase, and a practical measure of emulsion stability is the rate of increase of the volume of this phase, V, as a function of time. A useful equation is... [Pg.512]

Exerowa and co-workers [201] suggest that surfactant association initiates black film formation the growth of a black film is discussed theoretically by de Gennes [202]. A characteristic of thin films important for foam stability, their permeability to gas, has been studied in some depth by Platikanov and co-workers [203, 204]. A review of the stability and permeability of amphiphile films is available [205]. [Pg.522]

The growth of a well ordered fullerene monolayer, by means of molecular beam epitaxy, has been used for the controlled nucleation of single crystalline thin films. The quality and stability of molecular thin films has been shown... [Pg.2413]

Thin films of fullerenes, which were deposited on an electrode surface via, for example, drop coating, were largely heterogeneous, due to the entrapping of solvent molecules into their domains. Consequently, their electrochemical behaviour displayed different degrees of reversibility and stability depending on the time of electrolysis and the... [Pg.2418]

The first case is relevant in the discussion of colloid stability of section C2.6.5. It uses the potential around a single sphere in the case of a double layer that is thin compared to the particle, Ka 1. Furthennore, it is assumed that the surface separation is fairly large, such that exp(-K/f) 1, so the potential between two spheres can be calculated from the sum of single-sphere potentials. Under these conditions, is approximated by [42] ... [Pg.2678]

The result is the formation of a dense and uniform metal oxide layer in which the deposition rate is controlled by the diffusion rate of ionic species and the concentration of electronic charge carriers. This procedure is used to fabricate the thin layer of soHd electrolyte (yttria-stabilized 2irconia) and the interconnection (Mg-doped lanthanum chromite). [Pg.581]

Amorphous Silicon. Amorphous alloys made of thin films of hydrogenated siUcon (a-Si H) are an alternative to crystalline siUcon devices. Amorphous siUcon ahoy devices have demonstrated smah-area laboratory device efficiencies above 13%, but a-Si H materials exhibit an inherent dynamic effect cahed the Staebler-Wronski effect in which electron—hole recombination, via photogeneration or junction currents, creates electricahy active defects that reduce the light-to-electricity efficiency of a-Si H devices. Quasi-steady-state efficiencies are typicahy reached outdoors after a few weeks of exposure as photoinduced defect generation is balanced by thermally activated defect annihilation. Commercial single-junction devices have initial efficiencies of ca 7.5%, photoinduced losses of ca 20 rel %, and stabilized efficiencies of ca 6%. These stabilized efficiencies are approximately half those of commercial crystalline shicon PV modules. In the future, initial module efficiencies up to 12.5% and photoinduced losses of ca 10 rel % are projected, suggesting stabilized module aperture-area efficiencies above 11%. [Pg.472]

Stability, and can provide both ohmic low resistance contacts and rectifying contacts. Typically, siUcide layers are formed in situ by sputteriag a thin platiaum layer onto the siUcon surface, followed by sintering. Infrared detection is another appHcation of platiaum siUcide technology. [Pg.174]

BiaxiaHy orieated PPS film is transpareat and nearly colorless. It has low permeability to water vapor, carbon dioxide, and oxygen. PPS film has a low coefficient of hygroscopic expansion and a low dissipation factor, making it a candidate material for information storage devices and for thin-film capacitors. Chemical and thermal stability of PPS film derives from inherent resia properties. PPS films exposed to tolueae or chloroform for 8 weeks retaia 75% of theh original streagth. The UL temperature iadex rating of PPS film is 160°C for mechanical appHcatioas and 180°C for electrical appHcations. Table 9 summarizes the properties of PPS film. [Pg.450]

Raw juice is heated, treated sequentially with lime (CaO) and carbon dioxide, and filtered. This accomplishes three objectives (/) microbial activity is terminated (2) the thin juice produced is clear and only lightly colored and (J) the juice is chemically stabilized so that subsequent processing steps of evaporation and crystalliza tion do not result in uncontrolled hydrolysis of sucrose, scaling of heating surfaces, or coprecipitation of material other than sucrose. [Pg.26]

Foams are thermodynamically unstable. To understand how defoamers operate, the various mechanisms that enable foams to persist must first be examined. There are four main explanations for foam stabiUty (/) surface elasticity (2) viscous drainage retardation effects (J) reduced gas diffusion between bubbles and (4) other thin-film stabilization effects from the iateraction of the opposite surfaces of the films. [Pg.464]

Both high bulk and surface shear viscosity delay film thinning and stretching deformations that precede bubble bursting. The development of ordered stmctures in the surface region can also have a stabilizing effect. Liquid crystalline phases in foam films enhance stabiUty (18). In water-surfactant-fatty alcohol systems the alcohol components may serve as a foam stabilizer or a foam breaker depending on concentration (18). [Pg.465]

The traditional view of emulsion stability (1,2) was concerned with systems of two isotropic, Newtonian Hquids of which one is dispersed in the other in the form of spherical droplets. The stabilization of such a system was achieved by adsorbed amphiphiles, which modify interfacial properties and to some extent the colloidal forces across a thin Hquid film, after the hydrodynamic conditions of the latter had been taken into consideration. However, a large number of emulsions, in fact, contain more than two phases. The importance of the third phase was recognized early (3) and the lUPAC definition of an emulsion included a third phase (4). With this relation in mind, this article deals with two-phase emulsions as an introduction. These systems are useful in discussing the details of formation and destabilization, because of their relative simplicity. The subsequent treatment focuses on three-phase emulsions, outlining three special cases. The presence of the third phase is shown in order to monitor the properties of the emulsion in a significant manner. [Pg.196]

Liquid crystals stabilize in several ways. The lamellar stmcture leads to a strong reduction of the van der Waals forces during the coalescence step. The mathematical treatment of this problem is fairly complex (28). A diagram of the van der Waals potential (Fig. 15) illustrates the phenomenon (29). Without the Hquid crystalline phase, coalescence takes place over a thin Hquid film in a distance range, where the slope of the van der Waals potential is steep, ie, there is a large van der Waals force. With the Hquid crystal present, coalescence takes place over a thick film and the slope of the van der Waals potential is small. In addition, the Hquid crystal is highly viscous, and two droplets separated by a viscous film of Hquid crystal with only a small compressive force exhibit stabiHty against coalescence. Finally, the network of Hquid crystalline leaflets (30) hinders the free mobiHty of the emulsion droplets. [Pg.203]


See other pages where Thin stabilization is mentioned: [Pg.227]    [Pg.227]    [Pg.180]    [Pg.395]    [Pg.469]    [Pg.504]    [Pg.2377]    [Pg.2563]    [Pg.2564]    [Pg.131]    [Pg.171]    [Pg.176]    [Pg.205]    [Pg.70]    [Pg.380]    [Pg.426]    [Pg.434]    [Pg.69]    [Pg.178]    [Pg.180]    [Pg.459]    [Pg.399]    [Pg.51]    [Pg.252]    [Pg.230]    [Pg.233]    [Pg.334]    [Pg.392]    [Pg.352]    [Pg.298]    [Pg.465]    [Pg.487]    [Pg.194]    [Pg.9]   


SEARCH



Factors Affecting the Stability of Polymer Thin Films

Linear stability analysis thin films

Stability of thin films

Stability of thin liquid films

Stabilization thin-hquid films

Stabilization thin-liquid films

Surfactants thin-liquid-film stability affected

Thermal stability thin-film deposition

Thin environmental stability

Thin film stability

Thin films emulsifier-stabilized

Thin films protein-stabilized

Thin films stabilizing mechanisms

Thin films surfactant-stabilized

Thin films thermal stability

Thin stability

Thin stability

Thin-liquid-film stability and the effects of surfactants

© 2024 chempedia.info