Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stability modules

Amorphous Silicon. Amorphous alloys made of thin films of hydrogenated siUcon (a-Si H) are an alternative to crystalline siUcon devices. Amorphous siUcon ahoy devices have demonstrated smah-area laboratory device efficiencies above 13%, but a-Si H materials exhibit an inherent dynamic effect cahed the Staebler-Wronski effect in which electron—hole recombination, via photogeneration or junction currents, creates electricahy active defects that reduce the light-to-electricity efficiency of a-Si H devices. Quasi-steady-state efficiencies are typicahy reached outdoors after a few weeks of exposure as photoinduced defect generation is balanced by thermally activated defect annihilation. Commercial single-junction devices have initial efficiencies of ca 7.5%, photoinduced losses of ca 20 rel %, and stabilized efficiencies of ca 6%. These stabilized efficiencies are approximately half those of commercial crystalline shicon PV modules. In the future, initial module efficiencies up to 12.5% and photoinduced losses of ca 10 rel % are projected, suggesting stabilized module aperture-area efficiencies above 11%. [Pg.472]

The key determinants of future cost competitiveness of a-Si H PV technology are a-Si H deposition rates, module production yields, stabilized module efficiencies, production volume, and module design. Reported a-Si H deposition rates vary by more than a factor of 10, but most researchers report that the high quaUty films necessary for high stabilized efficiencies require low deposition rates often due to high hydrogen dhution of the Si (and Ge) source gases (see Semiconductors, amorphous). [Pg.472]

The magnetic regulators allow to synthesize in one module of the X-ray apparatus main cir-euit commutator, form converter, noncontact smooth ac voltage amplitude regulator, para-metrie stabilizer, ac supply filter, fimetional protection against the short-circuit in the X-ray tube and protection against emergencies in the control circuits. [Pg.431]

The remarkable stability and eontrollability of NMR speetrometers penults not only the preeise aeeiimulation of FIDs over several hours, but also the aequisition of long series of speetra differing only in some stepped variable sueh as an interpulse delay. A peak at any one ehemieal shift will typieally vary in intensity as this series is traversed. All the sinusoidal eomponents of this variation with time ean then be extraeted, by Fourier transfomiation of the variations. For example, suppose that the nomial ID NMR aequisition sequenee (relaxation delay, 90° pulse, eolleet FID) is replaeed by the 2D sequenee (relaxation delay, 90° pulse, delay i -90° pulse, eolleet FID) and that x is inereased linearly from a low value to ereate the seeond dimension. The polarization transfer proeess outlined in die previous seetion will then eause the peaks of one multiplet to be modulated in intensity, at the frequeneies of any other multiplet with whieh it shares a eoupling. [Pg.1457]

Figure 4.12 Schematic diagram illustrating the role of the conserved leucine residues (green) in the leucine-rich motif in stabilizing the P-loop-(x structural module. In the ribonuclease inhibitor, leucine residues 2, 5, and 7 from the P strand pack against leucine residues 17, 20, and 24 from the a helix as well as leucine residue 12 from the loop to form a hydrophobic core between the P strand and the a helix. Figure 4.12 Schematic diagram illustrating the role of the conserved leucine residues (green) in the leucine-rich motif in stabilizing the P-loop-(x structural module. In the ribonuclease inhibitor, leucine residues 2, 5, and 7 from the P strand pack against leucine residues 17, 20, and 24 from the a helix as well as leucine residue 12 from the loop to form a hydrophobic core between the P strand and the a helix.
Amorphous silicon modules experience a conversion efficiency loss of about 10 percent when initially exposed to sunlight, but then stabilize at the reduced figure. The mechanism for this reduction is being actively investigated, but is still not well understood. Individual modules made with other PV materials do not exliibit such loss of conversion efficiency, but combinations of modules in arrays do exhibit systematic reductions in power output over their lifetimes. Estimated at about 1 percent per year on average, based on data to date, these reductions are most likely associated with deteriorating electrical connections and non-module electrical components. [Pg.1059]

Click Coached Problems for a self-study module on nuclear stability. [Pg.31]

There have been numerous studies with the objective of gaining an understanding of the factors that influence the stability, stoichiometry, and H-site occupation in hydride phases. Stability has been correlated with cell volume [7] or the size of the interstitial hole in the metal lattice [8] and the free energy of the a p phase conversion. This has been widely exploited to modulate hydride phase stability, as discussed in Sec. 7.2.2.1. [Pg.212]

In the case of L-type Ca2+ channels, they also carry binding sites for Ca2+ antagonist drugs. The accessory a2-5, p, and y subunits stabilize Ca2+ channel function and support its targeting to the plasma membrane. Notably other proteins can associate with the channel complex allowing the formation of signaling complex important for channel targeting and modulation. [Pg.296]

The quality module must contain information on the identity, characteristics, manufacturing methods, control, packaging and stability of both the drug substance and final drug product. The standard headings used to present this information are shown in Figure 6.2. [Pg.101]


See other pages where Stability modules is mentioned: [Pg.230]    [Pg.391]    [Pg.959]    [Pg.1305]    [Pg.230]    [Pg.391]    [Pg.959]    [Pg.1305]    [Pg.430]    [Pg.2563]    [Pg.360]    [Pg.98]    [Pg.200]    [Pg.134]    [Pg.271]    [Pg.147]    [Pg.192]    [Pg.275]    [Pg.873]    [Pg.56]    [Pg.134]    [Pg.129]    [Pg.129]    [Pg.130]    [Pg.132]    [Pg.91]    [Pg.561]    [Pg.611]    [Pg.761]    [Pg.761]    [Pg.978]    [Pg.1097]    [Pg.1279]    [Pg.228]    [Pg.268]    [Pg.200]    [Pg.213]    [Pg.214]    [Pg.226]    [Pg.75]    [Pg.86]    [Pg.140]    [Pg.358]   
See also in sourсe #XX -- [ Pg.375 , Pg.388 ]




SEARCH



© 2024 chempedia.info