Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stabilization thin-liquid films

Clark, D.C., Coke, M., Mackie, A.R., Finder, A.C., and Wilson, D.R. Molecular-diffusion and thickness measurements of protein-stabilized thin liquid-films, /. Colloid Interface Sci, 138, 207,1990. [Pg.287]

CAS BUBBLE FORMATION AND STABILITY (THIN LIQUID FILMS AND FOAMS)... [Pg.124]

The disjoining pressure vs. thickness isotherms of thin liquid films (TFB) were measured between hexadecane droplets stabilized by 0.1 wt% of -casein. The profiles obey classical electrostatic behavior. Figure 2.20a shows the experimentally obtained rt(/i) isotherm (dots) and the best fit using electrostatic standard equations. The Debye length was calculated from the electrolyte concentration using Eq. (2.11). The only free parameter was the surface potential, which was found to be —30 mV. It agrees fairly well with the surface potential deduced from electrophoretic measurements for jS-casein-covered particles (—30 to —36 mV). [Pg.80]

K. Kozco, A.D. Nikolov, D.T. Wasan, R.P Borwankar, and A. Gonsalves Layering of Sodium Caseinate Submicelles in Thin Liquid Films-A New Stability Mechanism... [Pg.102]

Chu X L, Nikolov AD, Wasan DT (1995) Thin liquid film structime and stability The role of depletion and surface-induced structural forces. J Chem Phys 103 6653-6661... [Pg.139]

Thin-liquid-film stability. The effect of surfactants on film and foam stability. Surface elasticity. Froth flotation. The Langmuir trough and monolayer deposition. Laboratory project on the flotation of powdered silica. [Pg.153]

Thin-liquid-film stability and the effects of surfactants... [Pg.153]

THIN-LIQUID-FILM STABILITY AND THE EFFECTS OF SURFACTANTS... [Pg.155]

Miles (M10), 1960 Considers stability problem of thin liquid film (linear velocity profile) bounded by a solid wall and a cocurrent gas stream. [Pg.222]

Before determining the degree of stability of an emulsion and the reason lor this stability, the mechanisms of this destabilization should be considered. When an emulsion starts to separate, an oil layer appears on top. and an aqueous layer appears on the bottom. This separation is the final slate of the destabilization of the emulsion the initial two processes are called flocculation and coalescence. In flocculation, two droplets become attached to each other but are still separated by a thin film of the liquid. When more droplets are added, an aggregate is funned, in which the individual droplets cluster but retain the thin liquid films between them. The emulsifier molecules remain at the surface of the individual droplets during this process. [Pg.559]

The traditional view of emulsion stability (1,2) was concerned with systems of two isotropic, Newtonian liquids of which one is dispersed in the other in the form of spherical droplets. The stabilization of such a system was achieved by adsorbed amphiphiles, which modify interfacial properties and to some extent the colloidal forces across a thin liquid film, after the hydrodynamic conditions of the latter had been taken into consideration. However, a laige number of emulsions, in fact, contain more than two phases. The importance of the third phase was recognized early (3) and the IUPAC definition of an emulsion included a third phase (4). With this relation in mind, this article deals with two-phase emulsions as an introduction. These systems are useful in discussing the details of formation and destabilization, because of their relative simplicity. The subsequent treatment focuses on three-phase emulsions, outlining three special cases. The presence of the third phase is shown in order to monitor the properties of the emulsion in a significant manner. [Pg.196]

Liquid crystals stabilize in several ways. The lamellar structure leads to a strong reduction of the van der Waals forces during the coalescence step. The mathematical treatment of this problem is fairly complex (28). A diagram of the van der Waals potential (Fig. 15) illustrates the phenomenon (29). Without the liquid crystalline phase, coalescence takes place over a thin liquid film in a distance range, where the slope of the van der Waals potential is steep, ie, there is a large van der Waals force. With the liquid crystal present, coalescence takes place over a thick film and the slope of the van der Waals potential is small. In addition, the liquid crystal is highly viscous, and two droplets separated by a viscous film of liquid crystal with only a small compressive force exhibit stability against coalescence. Finally, the network of liquid crystalline leaflets (30) hinders the free mobility of the emulsion droplets. [Pg.203]

Liquid films which form between approaching drops or bubbles are important structural elements of dispersed systems. The stability of these films controls the dispersion stability because the drops or bubbles cannot coalesce until the intervening film ruptures. The drainage and stability of thin liquid films attracted the attention of scientists already centuries ago [5,6]. [Pg.7]

Although methods were available to prepare and investigate isolated air-suspended thin liquid films many years ago [5], they have only been developed further comparatively recently. The most extensive studies have been performed on surfactant-stabilized films using molecules such as sodium dodecyl sulfate [6]. Our apparatus has been developed from the film holders used by this Bulgarian group. [Pg.26]

The main factor determining the stability of such foams is the rate and extent of drainage from the thin liquid film. In general, this type of foam is relatively unstable. The stability may be enhanced by increasing the viscosity of the liquid by increasing the dry matter content or adding certain hydrocolloids. The foam stability may also be enhanced with hydrocolloids, in particular microcrystalline cellulose. [Pg.61]

A foam is a colloidal dispersion in which a gas is dispersed in a continuous liquid phase. The dispersed phase is sometimes referred to as the internal (disperse) phase, and the continuous phase as the external phase. Despite the fact that the bubbles in persistent foams are polyhedral and not spherical, it is nevertheless conventional to refer to the diameters of gas bubbles in foams as if they were spherical. In practical occurrences of foams, the bubble sizes usually exceed the classical size limit given above, as may the thin liquid film thicknesses. In fact, foam bubbles usually have diameters greater than 10 pm and may be larger than 1000 pm. Foam stability is not necessarily a function of drop size, although there may be an optimum size for an individual foam type. It is common but almost always inappropriate to characterize a foam in terms of a given bubble size since there is inevitably a size distribution. This is usually represented by a histogram of sizes, or, if there are sufficient data, a distribution function. [Pg.7]

In concentrated emulsions and foams the thin liquid films that separate the droplets or bubbles from each other are very important in determining the overall stability of the dispersion. In order to be able to withstand deformations without rupturing, a thin liquid film must be somewhat elastic. The surface chemical explanation for thin film elasticity comes from Marangoni and Gibbs (see Ref. [199]). When a surfactant-stabilized film undergoes sudden expansion, then immediately the expanded... [Pg.86]

Figure 5.6 shows an example of a total interaction energy curve for a thin liquid film stabilized by the presence of ionic surfactant. It can be seen that either the attractive van der Waals forces or the repulsive electric double-layer forces can predominate at different film thicknesses. In the example shown, attractive forces dominate at large film thicknesses. As the thickness decreases the attraction increases but eventually the repulsive forces become significant so that a minimum in the curve may occur, this is called the secondary minimum and may be thought of as a thickness in which a meta-stable state exists, that of the common black film. As the... [Pg.126]

The thin liquid films bounded by gas on one side and by oil on the other, denoted air/water/oil are referred to as pseudoemulsion films [301], They are important because the pseudoemulsion film can be metastable in a dynamic system even when the thermodynamic entering coefficient is greater than zero. Several groups [301,331,342] have interpreted foam destabilization by oils in terms of pseudoemulsion film stabilities [114]. This is done based on disjoining pressures in the films, which may be measured experimentally [330] or calculated from electrostatic and dispersion forces [331], The pseudoemulsion model has been applied to both bulk foams and to foams flowing in porous media. [Pg.154]

Although many factors, such as film thickness and adsorption behaviour, have to be taken into account, the ability of a surfactant to reduce surface tension and contribute to surface elasticity are among the most important features of foam stabilization (see Section 5.4.2). The relation between Marangoni surface elasticity and foam stability [201,204,305,443] partially explains why some surfactants will act to promote foaming while others reduce foam stability (foam breakers or defoamers), and still others prevent foam formation in the first place (foam preventatives, foam inhibitors). Continued research into the dynamic physical properties of thin-liquid films and bubble surfaces is necessary to more fully understand foaming behaviour. Schramm et al. [306] discuss some of the factors that must be considered in the selection of practical foam-forming surfactants for industrial processes. [Pg.210]

Malhotra, A.K. Wasan, D.T. Interfacial Rheological Properties of Adsorbed Surfactant Films with Applications to Emulsion and Foam Stability in Thin Liquid Films, Ivanov, I.B. (Ed.), Dekker New York, 1988, pp. 829-890. [Pg.412]

D. E. Tambe and M. M. Sharma, Hydrodynamics of thin liquid-films bounded by viscoelastic interfaces, J. Colloid Interface Sci. 147, 137-151 (1991) Factors controlling the stability of colloid-stabilized emulsions. 1. An experimental investigation, J. Colloid Interface Sci. 157, 244-253 (1993) Factors controlling the stability of colloid-stabilized emulsions. 2. A model for the rheological properties of colloid-laden interfaces, J. Colloid Interface Sci. 162, 1-10 (1994) Factors controlling the stability of colloid-stabilized emulsions. 3. Measurement of the rheological properties of colloid-laden interfaces, J. Colloid Interface Sci. 171, 456-462 (1995). [Pg.89]

Details about the theory of stability of thin liquid films, including foam films, can be found in some monographs [3-6]. However, the literature reflecting the theory of black foam films is rather poor. For this reason it will be granted special attention here. The new theoretical and experimental results accumulated during the recent years have brought nearer... [Pg.88]

Study of processes leading to rupture of foam films can serve to establish the reasons for their stability. The nature of the unstable state of thin liquid films is a theoretical problem of major importance (it has been under discussion for the past half a century), since film instability causes the instability of some disperse systems. On the other hand, the rupture of unstable films can be used as a model in the study of various flotation processes. The unstable state of thin liquid films is a topic of contemporary interest and is often considered along with the processes of spreading of thin liquid films on a solid substrate (wetting films). Thermodynamic and kinetic mechanisms of instability should be clearly distinguished so that the reasons for instability of thin liquid films could be found. Instability of bilayer films requires a special treatment, presented in Section 3.4.4. [Pg.115]

The development of the thermodynamics of thin films is related to the problem of stability of disperse systems. An important contribution to its solving are the works of the Russian scientists Derjaguin and Landau [1] and the Dutch scientists Verwey and Overbeek [2], known today as the DVLO theory. According to their concept the particular state of the thin liquid films is due to the change in the potential energy of molecular interaction in the film and the deformation of the diffuse electric layers. The thermodynamic characteristic of a state of the liquid in the thin film, as shown in Section 3.1, appears to be the dependence of disjoining pressure on film thickness, the n(/t) isotherm. The thermodynamic properties of... [Pg.124]

Theoretical analysis of sheeting in the drainage of thin liquid films has been conducted in [359]. Sheeting dynamics and hole formation (i.e. black spot formation) was described by non-linear hydrodynamic stability analysis based on the equilibrium oscillatory structural component of disjoining pressure. The effect of stepwise thinning, accompanied by formation of holes , was described qualitatively. It is rather arguable whether the term holes for a black spot is appropriate since in 1980 holes in NBF were described as lack of molecules. The use the same term for two different formations is at least confusing. Besides, to have a hole in a CBF is almost as to have a hole in the sea water . [Pg.222]


See other pages where Stabilization thin-liquid films is mentioned: [Pg.124]    [Pg.124]    [Pg.581]    [Pg.80]    [Pg.85]    [Pg.89]    [Pg.90]    [Pg.157]    [Pg.174]    [Pg.182]    [Pg.161]    [Pg.463]    [Pg.122]    [Pg.15]    [Pg.80]    [Pg.141]    [Pg.88]    [Pg.303]    [Pg.789]    [Pg.794]    [Pg.797]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.2 , Pg.416 , Pg.426 , Pg.430 ]

See also in sourсe #XX -- [ Pg.2 , Pg.416 , Pg.426 , Pg.430 ]




SEARCH



Liquid films

Liquid stabilization

Liquids stability

Stability of thin liquid films

Surfactants thin-liquid-film stability affected

Thin film stability

Thin liquid films

Thin stability

Thin stabilization

Thin-liquid-film stability and the effects of surfactants

© 2024 chempedia.info