Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thin detection

The case of thin-skin regime appears in various industrial sectors such as aerospace (with aluminium parts) and also nuclear in tubes (with ferromagnetic parts or mild steel components). The detection of deeper defects depends of course on the choice of the frequency and the dimension of the probe. Modelling can evaluate different solutions for a type of testing in order to help to choose the best NDT system. [Pg.147]

But it is clear that single radiogram digitization is not sufficient to detect very thin defects. That is why EDF is working on digital double loading , that means ... [Pg.503]

Based upon a piezoelectric 1-3-composite material, air-bome ultrasonic probes for frequencies up to 2 MHz were developped. These probes are characterized by a bandwidth larger than 50 % as well as a signal-to-noise ratio higher than 100 dB. Applications are the thickness measurement of thin powder layers, the inspection of sandwich structures, the detection of surface near cracks in metals or ceramics by generation/reception of Rayleigh waves and the inspection of plates by Lamb waves. [Pg.840]

The coin-tap test is a widely used teclinique on thin filament winded beams for detection of disbonded and delaminated areas. However, since the sensitivity of this teclinique depends not only on the operator but also on the thickness of the inspected component, the coin-tap testing technique is most sensitive to defects positioned near the surface of the laminate. Therefore, it was decided to constructed a new scaimer for automated ultrasonic inspection of filament winded beams. A complete test rig illustrated in figure 6 was constructed in order to reduce the scanning time. While the beam rotates the probe is moved from one end to the other of the beam. When the scarming is complete it is saved on diskette and can then be evaluated on a PC. The scanner is controlled by the P-scan system, which enables the results to be presented in three dimensions (Top, Side and End view). [Pg.983]

Thin-Layer Chromatography. Chiral stationary phases have been used less extensively in tic as in high performance Hquid chromatography (hplc). This may, in large part, be due to lack of avakabiHty. The cost of many chiral selectors, as well as the accessibiHty and success of chiral additives, may have inhibited widespread commerciali2ation. Usually, nondestmctive visuali2ation of the sample spots in tic is accompHshed using iodine vapor, uv or fluorescence. However, the presence of the chiral selector in the stationary phase can mask the analyte and interfere with detection (43). [Pg.62]

Transmission electron microscopy (tern) is used to analyze the stmcture of crystals, such as distinguishing between amorphous siUcon dioxide and crystalline quartz. The technique is based on the phenomenon that crystalline materials are ordered arrays that scatter waves coherently. A crystalline material diffracts a beam in such a way that discrete spots can be detected on a photographic plate, whereas an amorphous substrate produces diffuse rings. Tern is also used in an imaging mode to produce images of substrate grain stmctures. Tern requires samples that are very thin (10—50 nm) sections, and is a destmctive as well as time-consuming method of analysis. [Pg.356]

For pipelines in service in chemical plants, it is not usually convenient to place a radiation source inside the pipe and position it to irradiate each welded joint. The radioisotope source container maybe placed on the outer surface of the pipe. The radiation beams then pass through two pipe wall thicknesses to expose films placed diametrically opposite the radiation source, also on the outside of the pipe wall. Other methods, such as magnetic particle inspection of welds in steel pipe, or ultrasonic inspection of welds in pipes of all materials, supplement x-rays in many critical appHcations. The ultrasonic tests can often detect the thin, laminar discontinuities parallel to the pipe surface or the incomplete fusion discontinuities along the weld... [Pg.129]

Stability, and can provide both ohmic low resistance contacts and rectifying contacts. Typically, siUcide layers are formed in situ by sputteriag a thin platiaum layer onto the siUcon surface, followed by sintering. Infrared detection is another appHcation of platiaum siUcide technology. [Pg.174]

Thin-Layer Chromatography (tic). Tic (126) is used widely for quahtative analysis and micro-quantity separation of amino acid mixtures. The amino acids detected are developed by ninhydrin coloring, except for proline and hydroxyproline. Isatia has been recommended for specific coloring of pToline (127). [Pg.285]

The nonquantitative detection of radioactive emission often is required for special experimental conditions. Autoradiography, which is the exposure of photographic film to radioactive emissions, is a commonly used technique for locating radiotracers on thin-layer chromatographs, electrophoresis gels, tissue mounted on sHdes, whole-body animal sHces, and specialized membranes (13). After exposure to the radiolabeled emitters, dark or black spots or bands appear as the film develops. This technique is especially useful for tritium detection but is also widely used for P, P, and 1. [Pg.439]

Gas-flow counting is a method for detecting and quantitating radioisotopes on paper chromatography strips and thin-layer plates. Emissions are measured by interaction with an electrified wire in an inert gas atmosphere. AH isotopes are detectable however, tritium is detected at very low (- 1%) efficiency. [Pg.439]

Experimentally, it is sometimes difficult to detect differences between a shear-thinning Hquid in which the viscosity decreases with increasing shear, and a thixotropic material in which the viscosity decreases with time, because of the combined shear and time effects that occur during a series of measurements. This is especially tme if only a few data points are collected. In addition, most materials that are thixotropic are also shear thinning. In fact. [Pg.168]


See other pages where Thin detection is mentioned: [Pg.21]    [Pg.105]    [Pg.21]    [Pg.105]    [Pg.170]    [Pg.1249]    [Pg.1544]    [Pg.1625]    [Pg.1698]    [Pg.1786]    [Pg.1847]    [Pg.1948]    [Pg.1948]    [Pg.1979]    [Pg.263]    [Pg.264]    [Pg.253]    [Pg.269]    [Pg.442]    [Pg.209]    [Pg.49]    [Pg.287]    [Pg.198]    [Pg.325]    [Pg.355]    [Pg.356]    [Pg.356]    [Pg.332]    [Pg.124]    [Pg.124]    [Pg.125]    [Pg.131]    [Pg.132]    [Pg.276]    [Pg.436]    [Pg.377]    [Pg.83]    [Pg.396]    [Pg.480]    [Pg.50]    [Pg.392]   
See also in sourсe #XX -- [ Pg.112 , Pg.113 ]




SEARCH



Aldehydes, detection thin layer chromatography

Amperometric detection thin-layer

Detection of polycyclic aromatic hydrocarbons using thin-layer chromatography

Ketones, detection thin layer chromatography

Peroxides, detection thin layer chromatography

Quantitation of Lipid Classes by Thin-Layer Chromatography with Flame Ionization Detection

Semiconductive Thin-film detect

Thin layer chromatography detection

Thin-Layer Chromatography and Detection

Thin-layer chromatography detection methods

Thin-layer chromatography spot detection

Thin-layer chromatography-flame ionization detection

Thin-layer chromatography-flame ionization detection for lipid analysis

Thin-layer detecting insecticides

© 2024 chempedia.info