Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thiamin coenzymes diphosphate

Structures of Thiamin-Dependent Enzymes 4. The Variety of Enzymatic Reactions Involving Thiamin 5. Oxidative Decarboxylation and 2-Acetylthiamin Diphosphate. 6. Thiamin Coenzymes in Nerve Action 753. .. Table 14-4 Some Pyruvoyl Enzymes... [Pg.718]

Vitamin Bj Vitamin Bj was discovered in 1926 by Jansen and Do-NATH, who synthesized it in its crystalline form from rice bran. It was initially called aneurine due to its antipolyneuropathic effect. Because it contains sulphur, Windaus correctly renamed it thiamine in 1932, a term by which it is still known today. The stixicture of this vitamin was described by Williams and Grewe in 1936. It is made up of pyrimidine and thiazole. Thiamine occurs in nature as free thiamine and in the form of thiamine monophosphate, diphosphate and triphosphate. A maximum amount of 8 — 15 mg is absorbed daily in the proximal portion of the small intestine. In the case of oversupply, thiamine is neither stored nor intestinally absorbed. A regular intake, with a daily requirement of about 1 mg, is necessary. The major coenzyme is thiamine pyrophosphate (TPP). Thiamine deficiency may be caused by malnutrition, impaired absorption, alcoholism, antithiamines or a lack of magnesium. Magnesium is an important cofactor for the coenzyme thiamine pyrophosphate. [Pg.48]

Biosynthesis In microorganisms and plants from pyruvic acid 2 pyruvate- 2-acetolactic acid (acetolactate synthase, EC 4.1.3.18 coenzyme thiamin(e) diphosphate)- 2,3-dihydroxyisovaleric acid (2-acetolactate mutase, EC 5.4.99.3)- 2-oxoisovaleric acid (dihydroxy acid dehydratase, EC 4.2.1.9). This is finally am-inated by branched chain amino acid aminotransferase (EC 2.6.1.42). 2-Oxoisovaleric acid is also a precursor of Leu. [Pg.683]

Aldehydes and ketones are converted into alkenes by means of a nucleophilic addition called the Wittig reaction. The reaction has no direct biological counterpart but is important both because of its wide use in the laboratory and drug manufacture and because of its mechanistic similarity to reactions of the coenzyme thiamin diphosphate, which well see in Section 29.6. [Pg.720]

Step 4 of Figure 29.12 Oxidative Decarboxylation The transformation of cr-ketoglutarate to succinyl CoA in step 4 is a multistep process just like the transformation of pyruvate to acetyl CoA that we saw in Figure 29.11. In both cases, an -keto acid loses C02 and is oxidized to a thioester in a series of steps catalyzed by a multienzynie dehydrogenase complex. As in the conversion of pyruvate to acetyl CoA, the reaction involves an initial nucleophilic addition reaction to a-ketoglutarate by thiamin diphosphate vlide, followed by decarboxylation, reaction with lipoamide, elimination of TPP vlide, and finally a transesterification of the dihydrolipoamide thioester with coenzyme A. [Pg.1157]

Thiamin has a central role in energy-yielding metabo-hsm, and especially the metabohsm of carbohydrate (Figure 45-9). Thiamin diphosphate is the coenzyme for three multi-enzyme complexes that catalyze oxidative decarboxylation reactions pymvate dehydrogenase in carbohydrate metabolism a-ketoglutarate dehydro-... [Pg.488]

Thiamine diphosphate (TDP) is an essential coenzyme in carbohydrate metabolism. TDP-dependent enzymes catalyze carbon-carbon bond-breaking and -forming reactions such as a-keto acid decarboxylations (oxidative and non-oxidative) and condensations, as well as ketol transfers (trans- and phospho-ketolation). Some of these processes are illustrated in Fig. 12. [Pg.17]

Thiamine (vitamin Bi), in the form of thiamine diphosphate (TPP), is a coenzyme of some considerable importance in carbohydrate metabolism. Dietary deficiency leads to the condition beriberi, characterized by neurological disorders, loss of appetite, fatigue, and muscular weakness. We shall study a number of... [Pg.437]

Now this reaction is effectively a repeat of the pyruvate acetyl-CoA oxidative decarboxylation we saw at the beginning of the Krebs cycle. It similarly requires thiamine diphosphate, lipoic acid, coenzyme A and NAD+. A further feature in common with that reaction is that 2-oxoglutarate dehydrogenase is also an enzyme complex comprised of three separate enzyme activities. 2-Oxoglutarate is thus transformed into succinyl-CoA, with the loss of... [Pg.587]

The intermediary metabolism has multienzyme complexes which, in a complex reaction, catalyze the oxidative decarboxylation of 2-oxoacids and the transfer to coenzyme A of the acyl residue produced. NAD" acts as the electron acceptor. In addition, thiamine diphosphate, lipoamide, and FAD are also involved in the reaction. The oxoacid dehydrogenases include a) the pyruvate dehydrogenase complex (PDH, pyruvate acetyl CoA), b) the 2-oxoglutarate dehydrogenase complex of the tricarboxylic acid cycle (ODH, 2-oxoglutarate succinyl CoA), and c) the branched chain dehydrogenase complex, which is involved in the catabolism of valine, leucine, and isoleucine (see p. 414). [Pg.134]

The five different coenzymes involved are associated with the enzyme components in different ways. Thiamine diphosphate is non-covalently bound to El, whereas lipoamide is covalently bound to a lysine residue of E2 and FAD is bound as a prosthetic group to E3. NAD" and coenzyme A, being soluble coenzymes, are only temporarily associated with the complex. [Pg.134]

D. 4. Pumping Ions with the Help of Biotin Thiamin Diphosphate 735. .. Table 14-2 Enzymes Dependent upon Thiamin Diphosphate as a Coenzyme... [Pg.718]

Compounds, often derivatives of vitamins that, while in the active site of the enzyme, alter the structure of a substrate in a way that permits it to react more readily. Coenzyme A, pyridoxal phosphate, thiamin diphosphate, and vitamin B12 coenzymes fall into this group. [Pg.719]

Why do we need vitamins Early clues came in 1935 when nicotinamide was found in NAD+ by H. von Euler and associates and in NADP+ by Warburg and Christian. Two years later, K. Lohman and P. Schuster isolated pure cocarboxylase, a dialyz-able material required for decarboxylation of pyruvate by an enzyme from yeast. It was shown to be thiamin diphosphate (Fig. 15-3). Most of the water-soluble vitamins are converted into coenzymes or are covalently bound into active sites of enzymes. Some lipid-soluble vitamins have similar functions but others, such as vitamin D and some metabolites of vitamin A, act more like hormones, binding to receptors that control gene expression or other aspects of metabolism. [Pg.721]

Thiamin is synthesized in bacteria, fungi, and plants from 1-deoxyxylulose 5-phosphate (Eq. 25-21), which is also an intermediate in the nonmevalonate pathway of polyprenyl synthesis. However, thiamin diphosphate is a coenzyme for synthesis of this intermediate (p. 736), suggesting that an alternative pathway must also exist. Each of the two rings of thiamin is formed separately as the esters 4-amino-5-hydroxy-methylpyrimidine diphosphate and 4-methyl-5-((i-hydroxyethyl) thiazole monophosphate. These precursors are joined with displacement of pyrophosphate to form thiamin monophosphate.92b In eukaryotes this is hydrolyzed to thiamin, then converted to thiamin diphosphate by transfer of a diphospho group from ATP.92b c In bacteria thiamin monophosphate is converted to the diphosphate by ATP and thiamin monophosphate kinase.92b... [Pg.731]

We see that the essence of the action of thiamin diphosphate as a coenzyme is to convert the substrate into a form in which electron flow can occur from the bond to be broken into the structure of the coenzyme. Because of this alteration in structure, a bond breaking reaction that would not otherwise have been possible occurs readily. To complete the catalytic cycle, the electron flow has to be reversed again. The thiamin-bound cleavage product (an enamine) from either of the adducts in Eq. 14-20 can be reconverted to the thiazolium dipolar ion and an aldehyde as shown in step b of Eq. 14-21 for decarboxylation of pyruvate to acetaldehyde. [Pg.732]

Enzymes Dependent upon Thiamin Diphosphate as a Coenzyme... [Pg.735]

The oxidative cleavage of an a-oxoacid is a major step in the metabolism of carbohydrates and of amino acids and is also a step in the citric acid cycle. In many bacteria and in eukaryotes the process depends upon both thiamin diphosphate and lipoic acid. The oxoacid anion is cleaved to form C02 and the remaining acyl group is combined with coenzyme A (Eq. 15-33). [Pg.796]

In a rare autosomal recessive condition (discovered in 1954) the urine and perspiration has a maple syrup odor/ High concentrations of the branched-chain 2-oxoacids formed by transamination of valine, leucine, and isoleucine are present, and the odor arises from decomposition products of these acids. The branched-chain amino acids as well as the related alcohols also accumulate in the blood and are found in the urine. The biochemical defect lies in the enzyme catalyzing oxidative decarboxylation of the oxoacids, as is indicated in Fig. 24-18. Insertions, deletions, and substitutions may be present in any of the subunits (Figs. 15-14,15-15). The disease which may affect one person in 200,000, is usually fatal in early childhood if untreated. Children suffer seizures, mental retardation, and coma. They may survive on a low-protein (gelatin) diet supplemented with essential amino acids, but treatment is difficult and a sudden relapse is apt to prove fatal. Some patients respond to administration of thiamin at 20 times the normal daily requirement. The branched-chain oxoacid dehydrogenase from some of these children shows a reduced affinity for the essential coenzyme thiamin diphosphate.d... [Pg.1394]

The diphosphate ester, TPP, is the physiologically active vitamer and functions as a coenzyme (67,68). The absorption, metabolism, and physiological functions of thiamine have recently been reviewed (20,67,68). [Pg.408]

Schellenberger A, Neef H, Golbig R, Hiibner G, Konig S (1990) Mechanistic aspects of thiamine pyrophosphate enzymes via site-directed substitutions of the coenzyme structure. In Bisswanger H, Ullrich H (eds) Biochemistry and physiology of thiamin diphosphate enzymes. VCH, Weinheim, p 3... [Pg.41]

This vitamin acts as a coenzyme in the metabolism of carbohydrates and is present in all living tissues. It acts in the form of thiamin diphosphate in the decarboxylation of a-keto acids and is referred to as cocarboxylase. Thiamin is available in the form of its chloride or nitrate, and its structural formula is shown in Figure 9-12. The molecule contains two basic nitrogen atoms one is in the primary amino group, the other in the quater-... [Pg.265]

There are two carbanions that dictate the important biological activity of thiamin diphosphate (ThDP, the vitamin coenzyme) the C2-carbanion or ylide, and the... [Pg.1254]

The coenzymes thiamin diphosphate and lipoamide are involved in the last step. [Pg.814]

As shown in Figure 6.1, thiamin consists of pyrimidine and thiazole rings, linked by a methylene bridge the alcohol group of the side chain can be esterified with one, two, or three phosphates, yielding thiamin monophosphate, thiamin diphosphate (also known as thiamin pyrophosphate, the metabolically active coenzyme), and thiamin triphosphate. The vitamin was originally named aneurine, the antineuritic vitamin, because of its function in preventing or... [Pg.148]

The studies of Peters in the 1920s and 1930s (Peters, 1963) established the coenzyme role of thiamin in the oxidative decarboxylation of pyruvate. Thiamin diphosphate is the coenzyme for three multienzyme complexes in mammalian mitochondria that are involved in the oxidative decarboxylation of oxo-acids pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase in central... [Pg.153]

Later studies established the coenzyme role of thiamin diphosphate in transketolase in the pentose phosphate pathway. More recent studies have shown that thiamin triphosphate acts to regulate a chloride channel in nerve tissue. [Pg.154]


See other pages where Thiamin coenzymes diphosphate is mentioned: [Pg.934]    [Pg.390]    [Pg.1043]    [Pg.133]    [Pg.166]    [Pg.489]    [Pg.587]    [Pg.605]    [Pg.366]    [Pg.112]    [Pg.511]    [Pg.730]    [Pg.21]    [Pg.31]    [Pg.159]    [Pg.734]    [Pg.808]   


SEARCH



Coenzyme Apoenzyme Interactions Studies on the Binding of Thiamine Diphosphate to Apotransketolase from Bakers Yeast

Coenzymes thiamine diphosphate

Thiamin coenzymes

Thiamin diphosphate

Thiamin diphosphate coenzyme function

Thiamine diphosphate

Transketolases thiamin diphosphate coenzyme

© 2024 chempedia.info