Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermoplastics introduction

As the author pointed out in the first edition of this book, the likelihood of discovering new important general purpose materials was remote but special purpose materials could be expected to continue to be introduced. To date this prediction has proved correct and the 1960s saw the introduction of the polysulphones, the PPO-type materials, aromatic polyesters and polyamides, the ionomers and so on. In the 1970s the new plastics were even more specialised in their uses. On the other hand in the related fields of rubbers and fibres important new materials appeared, such as the aramid fibres and the various thermoplastic rubbers. Indeed the division between rubbers and plastics became more difficult to draw, with rubbery materials being handled on standard thermoplastics-processing equipment. [Pg.9]

Tsai, S.W. and Hahn, H.T. Introduction to Composite Materials, Technomic Westport, CT (1980). Folkes, M.J. Short Fibre Reinforced Thermoplastics, Research Studies E ress, Somerset (1982). Mathews, F.L. and Rawlings, R.D. Composite Materials Engineering and Science, Chapman and Hall, London (1993). [Pg.240]

Foamed thermoplastic articles have a cellular core with a relatively dense (solid) skin. The foam effect is achieved by the dispersion of inert gas throughout the molten resin directly before moulding. Introduction of the gas is usually carried out either by pre-blending the resin with a chemical blowing agent which releases gas when heated or by direct injection of the gas (usually nitrogen). [Pg.297]

Polymers can be modified by the introduction of ionic groups [I]. The ionic polymers, also called ionomers, offer great potential in a variety of applications. Ionic rubbers are mostly prepared by metal ion neutralization of acid functionalized rubbers, such as carboxylated styrene-butadiene rubber, carboxylated polybutadiene rubber, and carboxylated nitrile rubber 12-5]. Ionic rubbers under ambient conditions show moderate to high tensile and tear strength and high elongation. The ionic crosslinks are thermolabile and, thus, the materials can be processed just as thermoplastics are processed [6]. [Pg.441]

Hydrosilation reactions have been one of the earlier techniques utilized in the preparation of siloxane containing block copolymers 22,23). A major application of this method has been in the synthesis of polysiloxane-poly(alkylene oxide) block copolymers 23), which find extensive applications as emulsifiers and stabilizers, especially in the urethane foam formulations 23-43). These types of reactions are conducted between silane (Si H) terminated siloxane oligomers and olefinically terminated poly-(alkylene oxide) oligomers. Consequently the resulting system contains (Si—C) linkages between different segments. Earlier developments in the field have been reviewed 22, 23,43> Recently hydrosilation reactions have been used effectively by Ringsdorf 255) and Finkelmann 256) for the synthesis of various novel thermoplastic liquid crystalline copolymers where siloxanes have been utilized as flexible spacers. Introduction of flexible siloxanes also improved the processibility of these materials. [Pg.46]

P-plastomers provide a unique combination of ease of processing, such that conventional thermoplastic-processing routines and arid equipment can be adapted to this polymer as weU as for a final fabricated product that is elastic. This combination of properties leads to the easy fabrication of elastic materials such as fibers and films, which traditionally have only been made inelastic by the use of thermoplastics. This advance opens the pathway to the introduction of desirable elastic properties to a host of fabrication processes very different from either the conventional rubber-processing equipment or the conventional rubber products, such as tires. P-plastomers and their fabricated products are not only soft, but also elastic. [Pg.187]

Plastomers represent a major advancement for polyolefins. Their success allows polyolefins to have a continuum of products from amorphous EPR to thermoplastic PE and iPP. This development coincides with the advent of single-site catalysts these are necessary for copolymers of components of widely different reactivity such as ethylene and octene. Their rapid introduction into the mainstream polymer use indicates that this spectrum of properties and the inherent economy, stability and processibility of polyolefins are finding new applications to enter. [Pg.189]

In the case of poly(alkoxyphosphazenes) (IV) or poly(aryloxyphos-phazenes) (V) a dramatic change in properties can arise by employing combinations of substituents. Polymers such as (NP CHjCF ) and (NP CgH,).) are semicrystalline thermoplastics (Table I). With the introduction of two or more substituents of sufficiently different size, elastomers are obtained (Figure 4). Another requirement for elastomeric behavior is that the substituents be randomly distributed along the P-N backbone. This principle was first demonstrated by Rose (9), and subsequent work in several industrial laboratories has led to the development of phosphazene elastomers of commercial interest. A phosphazene fluoroelastomer and a phosphazene elastomer with mixed aryloxy side chains are showing promise for military and commercial applications. These elastomers are the subject of another paper in this symposium (10). [Pg.272]

FIRE RETARDANT FILLERS. The next major fire retardant development resulted from the need for an acceptable fire retardant system for such new thermoplastics as polyethylene, polypropylene and nylon. The plasticizer approach of CP or the use of a reactive monomer were not applicable to these polymers because the crystallinity upon which their desirable properties were dependent were reduced or destroyed in the process of adding the fire retardant. Additionally, most halogen additives, such as CP, were thermally unstable at the high molding temperatures required. The introduction of inert fire retardant fillers in 1965 defined two novel approaches to fire retardant polymers. [Pg.90]

The principal types of rigid plastic, both thermoplastic and thermosetting, are listed in Table 2.1, which also lists the abbreviations used in this text. A more comprehensive introduction to polymers is available [1]. [Pg.20]

Figure 18.11 contains a sketch of an extrusion blow-molding scheme. Here a heat-softened hollow plastic tube, or parison, is forced against the walls of the mold by air pressure. The sequence of material introduction into the mold and subsequent rejection of the material from the mold is generally rapid and automated. Approximately 1 million tons of thermoplastics are produced by this technique annually. [Pg.565]

In drape forming, the thermoplastic sheet is clamped and heated and the assembly then sealed over a male mold. The mold may be forced into the sheet or the sheet may be pulled into the mold by introduction of a vacuum between the sealed sheet and mold. By draping the sheet over the mold, the part of the sheet touching the mold remains close to the original thickness. Foamed PS and polyolefins are generally used in this procedure. [Pg.570]


See other pages where Thermoplastics introduction is mentioned: [Pg.460]    [Pg.460]    [Pg.461]    [Pg.462]    [Pg.475]    [Pg.475]    [Pg.476]    [Pg.477]    [Pg.478]    [Pg.32]    [Pg.460]    [Pg.460]    [Pg.461]    [Pg.462]    [Pg.475]    [Pg.475]    [Pg.476]    [Pg.477]    [Pg.478]    [Pg.32]    [Pg.429]    [Pg.189]    [Pg.261]    [Pg.15]    [Pg.279]    [Pg.207]    [Pg.149]    [Pg.103]    [Pg.169]    [Pg.184]    [Pg.143]    [Pg.234]    [Pg.272]    [Pg.679]    [Pg.8]    [Pg.10]    [Pg.543]    [Pg.558]    [Pg.103]    [Pg.565]    [Pg.568]    [Pg.150]    [Pg.312]    [Pg.220]    [Pg.316]    [Pg.50]    [Pg.383]    [Pg.17]    [Pg.261]   
See also in sourсe #XX -- [ Pg.107 ]




SEARCH



Processing, thermoplastics introduction

© 2024 chempedia.info