Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal properties values

Most of the available thermal property values are each measured at only one temperature, which is much lower than the usual processing temperature. But the diffusivity and conductivity of black-loaded natural rubber compounds deaease with increasing temperature. The decrease, over the temperature range from ambient to 200°C, can be as much as 45% [5]. This large temperature dependence should obviously be taken into account in heat-flow calculations at processing temperatures. [Pg.32]

Table 5.55 Thermal property values for PA 46 ) according to lEC 216 [ 101J 50% reduction in ultimate tensile strength [502]... Table 5.55 Thermal property values for PA 46 ) according to lEC 216 [ 101J 50% reduction in ultimate tensile strength [502]...
A numerical heat transfer model of thin fibrous materials under high heat flux eonditions (bench-top burner) was developed by Torvi and Dale [37]. The model is applicable to two common, flame resistant fabrics, Nomex IIIA and Kevlar /PBI. A fabric-air gap-test sensor system (Figure 12.4) is used in which heat transfer is assmned to be one-dimensional. The fabric s thermal properties represent the average thermal property values of the fibrous stmcture. Mass transfer, hot gas flow and fabrie stmctural changes are not considered. The fabric s thermal properties are taken as fimetions of temperature only. The authors use energy balance equations and models of heat transfer modes to develop a differential equation (equation 12.26), and initial and boimdary conditions ... [Pg.300]

The industrial value of furfuryl alcohol is a consequence of its low viscosity, high reactivity, and the outstanding chemical, mechanical, and thermal properties of its polymers, corrosion resistance, nonburning, low smoke emission, and exceUent char formation. The reactivity profile of furfuryl alcohol and resins is such that final curing can take place at ambient temperature with strong acids or at elevated temperature with latent acids. Major markets for furfuryl alcohol resins include the production of cores and molds for casting metals, corrosion-resistant fiber-reinforced plastics (FRPs), binders for refractories and corrosion-resistant cements and mortars. [Pg.80]

The many commercially attractive properties of acetal resins are due in large part to the inherent high crystallinity of the base polymers. Values reported for percentage crystallinity (x ray, density) range from 60 to 77%. The lower values are typical of copolymer. Poly oxymethylene most commonly crystallizes in a hexagonal unit cell (9) with the polymer chains in a 9/5 helix (10,11). An orthorhombic unit cell has also been reported (9). The oxyethylene units in copolymers of trioxane and ethylene oxide can be incorporated in the crystal lattice (12). The nominal value of the melting point of homopolymer is 175°C, that of the copolymer is 165°C. Other thermal properties, which depend substantially on the crystallization or melting of the polymer, are Hsted in Table 1. See also reference 13. [Pg.56]

Smoke, Flash, and Fire Points. These thermal properties may be determined under standard test conditions (57). The smoke poiat is defined as the temperature at which smoke begias to evolve continuously from the sample. Flash poiat is the temperature at which a flash is observed whea a test flame is appHed. The fire poiat is defiaed as the temperature at which the fire coatiaues to bum. These values are profouadly affected by minor coastitueats ia the oil, such as fatty acids, moao- and diglycerides, and residual solvents. These factors are of commercial importance where fats or oils are used at high temperatures such as ia lubricants or edible frying fats. [Pg.132]

Thermal Properties. Because all limestone is converted to an oxide before fusion or melting occurs, the only melting point appHcable is that of quicklime. These values are 2570°C for CaO and 2800°C for MgO. Boiling point values for CaO are 2850°C and for MgO 3600°C. The mean specific heats for limestones and limes gradually ascend as temperatures increase from 0 to 1000°C. The ranges are as follows high calcium limestone, 0.19—0.26 dolomitic quicklime, 0.19—0.294 dolomitic limestone, 0.206—0.264 magnesium oxide, 0.199—0.303 and calcium oxide, 0.175—0.286. [Pg.166]

For cubic crystals, which iaclude sUicon, properties described by other than a zero- or a second-rank tensor are anisotropic (17). Thus, ia principle, whether or not a particular property is anisotropic can be predicted. There are some properties, however, for which the tensor rank is not known. In addition, ia very thin crystal sections, the crystal may have two-dimensional characteristics and exhibit a different symmetry from the bulk, three-dimensional crystal (18). Table 4 is a listing of various isotropic and anisotropic sUicon properties. Table 5 gives values for the more common physical properties and for some of the thermodynamic properties. Figure 5 shows some thermal properties. [Pg.529]

Polyurethane. Polyurethanes (pu) are predominantly thermosets. The preparation processes for polyurethane foams have several steps (see Urethane polymers) and many variations that lead to products of widely differing properties. Polyurethane foams can have quite low thermal conductivity values, among the lowest of all types of thermal insulation, and have replaced polystyrene and glass fiber as insulation in refrigeration. The sprayed-on foam can be appHed to walls, roofs, tanks, and pipes, and between walls or surfacing materials directly. The slabs can be used as insulation in the usual ways. [Pg.328]

A substance is in the ideal gas state when the volume of its molecules is a zero fraction of the total volume taken up by the substance and when the individual molecules are far enough apart from each other so that there is no interaction between them. Although this only occurs at infinite volume and zero pressure, in practice, ideal gas properties can be used for gases up to a pressure of two atmospheres with little loss of accuracy. Thermal properties of ideal gas mixtures may be obtained by mole-fraction averaging the pure component values. [Pg.391]

Thermal Properties at Low Temperatures For sohds, the Debye model developed with the aid of statistical mechanics and quantum theoiy gives a satisfactoiy representation of the specific heat with temperature. Procedures for calculating values of d, ihe Debye characteristic temperature, using either elastic constants, the compressibility, the melting point, or the temperature dependence of the expansion coefficient are outlined by Barron (Cryogenic Systems, 2d ed., Oxford University Press, 1985, pp 24-29). [Pg.1127]

Some mechanical and thermal properties of acetal polymers are listed in Table 19.2. The value quoted are those supplied by the manufacturers. [Pg.539]

The other principal thermal properties of plastics which are relevant to design are thermal conductivity and coefficient of thermal expansion. Compared with most materials, plastics offer very low values of thermal conductivity, particularly if they are foamed. Fig. 1.10 shows comparisons between the thermal conductivity of a selection of metals, plastics and building materials. In contrast to their low conductivity, plastics have high coefficients of expansion when compared with metals. This is illustrated in Fig. 1.11 and Table 1.8 gives fuller information on the thermal properties of pl tics and metals. [Pg.32]

Examination of the thermodynamic properties of fluid tables shows how the viscosity varies with temperature. In order to obtain a general impression of this, consider the data in the thermal properties of fluid tables and the various values at different temperatures. [Pg.47]

POLYMAT materials data for plastics POLYMAT Materials Data for Plastics contains property values, e.g. mechanical, thermal, electrical, optical, rheological properties and text fields, e.g. special... [Pg.596]

These relationships can be used to calculate limiting values for several thermal properties as the temperature approaches zero Kelvin. [Pg.182]

The metal casting industry conventionally divides casting products into ferrous and nonferrous metals, in particular, iron-based, steel-based, aluminum-based, and copper-based castings. The other castings of low fractions include magnesium, lead, zinc, and their alloys. In the U.S., the foundry industry currently produces 11 million tons of metal product per year, with a shipment value of 19 billion. Of them, iron and steel accounted for 84% of metals cast.5 The remaining 15% of foundry operations are concerned with aluminum, copper, zinc, and lead production. Table 4.2 summarizes critical physical and thermal properties of aluminum, iron/steel, and cast iron. [Pg.160]

Thermal property is another critical property for furnace slag. Because of their more porous structure, blast furnace slag aggregates have lower thermal conductivities than conventional aggregates. Their insulating value is of particular advantage in applications such as frost tapers (transition treatments in pavement subgrades between frost-susceptible and nonfrost-susceptible soils) or pavement base courses over frost-susceptible soils. [Pg.174]


See other pages where Thermal properties values is mentioned: [Pg.76]    [Pg.47]    [Pg.102]    [Pg.191]    [Pg.149]    [Pg.76]    [Pg.47]    [Pg.102]    [Pg.191]    [Pg.149]    [Pg.115]    [Pg.65]    [Pg.503]    [Pg.510]    [Pg.527]    [Pg.85]    [Pg.152]    [Pg.1054]    [Pg.155]    [Pg.297]    [Pg.498]    [Pg.429]    [Pg.182]    [Pg.415]    [Pg.55]    [Pg.880]    [Pg.123]    [Pg.364]    [Pg.1317]    [Pg.191]    [Pg.259]    [Pg.203]    [Pg.130]    [Pg.176]    [Pg.318]   
See also in sourсe #XX -- [ Pg.95 , Pg.96 , Pg.97 , Pg.98 , Pg.99 , Pg.100 , Pg.101 , Pg.102 ]

See also in sourсe #XX -- [ Pg.297 , Pg.301 , Pg.307 , Pg.311 , Pg.317 , Pg.318 ]




SEARCH



Domalski-Hearing Group Contribution Values for Standard State Thermal Properties

Limiting Values for Thermal Properties at Zero Kelvin

Property values

Representative Thermal Property Values

Thermal Properties 1 Calorific Value

Typical Values of Thermal Properties

© 2024 chempedia.info