Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Emission Technique

A number of problems arise in connection with the use of emission IR spectroscopy (IRES). One of them arises from the existence of temperature gradients, which can cause self-absorption of the emitted radiation by the colder outer parts of the sample itself another is concerned with the selective reflection that occurs in the vicinity of strong absorption bands. This reduces the absorptance and hence the emittance. Moreover, perturbations can be created by reflections and emission by the cell elements. These problems, however, can in part be overcome so that IR emission spectra can be successfully recorded and are widely used, for example, in the fields of polymer and corrosion science and mineralogy. Some uses of IRES [Pg.105]


Corrosion of Metals. Corrosion phenomena of iron, cobalt, tin, and their alloys have been investigated by a variety of Mossbauer techniques by the transmission and scattering methods and by the emission technique in which the specimen under study is doped with a Mossbauer source isotope (e.g., Co) and measured against a single-line resonant... [Pg.506]

Among the spectrometric methods used to determine metal concentrations, FAAS is particularly useful to perform water analysis (Figure 11.1). It is a relatively inexpensive method, which presents an adequate sensitivity sufficiently high for the determination of major metals in most of aquatic systems. Considering that most of atomic absorption instruments are also equipped to operate in an emission mode, large number of alkali metals (i.e., Na, K) are typically determined by flame photometry or flame atomic emission spectrometry (FAES) due to their relatively low excitation and simplicity of the emission techniques. This technique is relatively free from spectral interferences, and considering its versatility and simplicity of operation, it has become the most extensively used method for the determination of metals within water samples. [Pg.285]

Emission spectroscopy can be used on samples such as metals and opaque substrates that cannot be studied by transmission. The emission technique can sometimes provide a more convenient method of acquiring the same spectral data, because no source other than the heated sample is required and reactions at high temperature can be studied directly. An emission cell has been designed to study samples up to temperatures of 1500X [62]. [Pg.104]

The emission technique is limited to the range of frequencies greater than 2000 cm because the low flux of energy in the lower frequency region gives a very weak signal. Measurements down to 400 cm are possible if the entire spectrometer and its surroundings are cooled. However, this option is not usually practical. The sample also may be heated to elevated temperatures, but sample decomposition then becomes a problem. [Pg.106]

A complete analysis of the thermal emission of surface species and their measurements has been reported [71]. A problem of extending the emission technique to surface analysis is that strong background emission can be superimposed on the weaker emission from the surface. Thus the ideal sample for emission studies is a very thin surface layer supported on a perfect reflector. An experimental emission sampling system designed specifically for the study of surface species has been described [72]. [Pg.106]

X-ray fluorescence A method of analysis used to identify and measure heavy elements in the presence of each other in any matrix. The sample is irradiated with a beam of primary X-rays of greater energy than the characteristic X-radiation of the elements in the sample. This results in the excitation of the heavy elements present and the emission of characteristic X-ray energies, which can be separated into individual wavelengths and measured. The technique is not suitable for use with elements of lower atomic number than calcium. [Pg.429]

Finally it is likely that attention will be focused on emissions of polynuclear aromatics (PNA) in diesel fuels. Currently the analytical techniques for these materials in exhaust systems are not very accurate and will need appreciable improvement. In conventional diesel fuels, emissions of PNA thought to be carcinogenic do not exceed however, a few micrograms per km, that is a car will have to be driven for several years and cover at least 100,000 km to emit one gram of benzopyrene for example These already very low levels can be divided by four if deeply hydrotreated diesel fuels are used. [Pg.266]

Finally, it is by means of synergy between the refining processes and the combustion techniques that the emissions of NO due to industrial installations can be minimized. [Pg.269]

These new regulations will contribute to the development of the acoustic emission technique. [Pg.56]

At contact fatigue tests of different steel and cast iron types was used the acoustic emission technique. Processed records from the AE analyser show importance of acoustic response of tested surface continuous sensing. In graphs are obvious characteristic types of summation curves, or may be from significant changes of AE signal course identified even phases of the wear process. [Pg.66]

The research activity here presented has been carried out at the N.D.T. laboratory of l.S.P.E.S.L. (National Institute for Occupational Safety and Prevention) and it is aimed at the set up of the Stress Pattern Analysis by Measuring Thermal Emission technique [I] applied to pressure vessels. Basically, the SPATE system detects the infrared flux emitted from points resulting from the minute temperature changes in a cyclically stressed structure or component. [Pg.408]

While field ion microscopy has provided an effective means to visualize surface atoms and adsorbates, field emission is the preferred technique for measurement of the energetic properties of the surface. The effect of an applied field on the rate of electron emission was described by Fowler and Nordheim [65] and is shown schematically in Fig. Vlll 5. In the absence of a field, a barrier corresponding to the thermionic work function, prevents electrons from escaping from the Fermi level. An applied field, reduces this barrier to 4> - F, where the potential V decreases linearly with distance according to V = xF. Quantum-mechanical tunneling is now possible through this finite barrier, and the solufion for an electron in a finite potential box gives... [Pg.300]

While a laser beam can be used for traditional absorption spectroscopy by measuring / and 7q, the strength of laser spectroscopy lies in more specialized experiments which often do not lend themselves to such measurements. Other techniques are connnonly used to detect the absorption of light from the laser beam. A coimnon one is to observe fluorescence excited by the laser. The total fluorescence produced is nonnally proportional to the amount of light absorbed. It can be used as a measurement of concentration to detect species present in extremely small amounts. Or a measurement of the fluorescence intensity as the laser frequency is scaimed can give an absorption spectrum. This may allow much higher resolution than is easily obtained with a traditional absorption spectrometer. In other experiments the fluorescence may be dispersed and its spectrum detennined with a traditional spectrometer. In suitable cases this could be the emission from a single electronic-vibrational-rotational level of a molecule and the experimenter can study how the spectrum varies with level. [Pg.1123]

The work function (p is the energy necessary to just remove an electron from the metal surface in thermoelectric or photoelectric emission. Values are dependent upon the experimental technique (vacua of 10 or torr, clean surfaces, and surface conditions including the crystal face identification). [Pg.355]

Historically, the first spectroscopic studies involved characterizing the emission of visible light from the sun, from flames, and from salts added to flames. Our survey of spectroscopy, however, begins with absorption because it is the more important technique in modern analytical spectroscopy. [Pg.380]

Emission spectroscopy is a very useful analytical technique in determining the elemental composition of a sample. The emission may be produced in an electrical arc or spark but, since the mid-1960s, an inductively coupled plasma has increasingly been used. [Pg.66]

Edx is based on the emission of x-rays with energies characteristic of the atom from which they originate in Heu of secondary electron emission. Thus, this technique can be used to provide elemental information about the sample. In the sem, this process is stimulated by the incident primary beam of electrons. As will be discussed below, this process is also the basis of essentially the same technique but performed in an electron spectrometer. When carried out this way, the technique is known as electron microprobe analysis (ema). [Pg.271]

Oxygen and nitrogen also are deterrnined by conductivity or chromatographic techniques following a hot vacuum extraction or inert-gas fusion of hafnium with a noble metal (25,26). Nitrogen also may be deterrnined by the Kjeldahl technique (19). Phosphoms is determined by phosphine evolution and flame-emission detection. Chloride is determined indirecdy by atomic absorption or x-ray spectroscopy, or at higher levels by a selective-ion electrode. Fluoride can be determined similarly (27,28). Uranium and U-235 have been determined by inductively coupled plasma mass spectroscopy (29). [Pg.443]

The emission yield from the horseradish peroxidase (HRP)-catalyzed luminol oxidations can be kicreased as much as a thousandfold upon addition of substituted phenols, eg, -iodophenol, -phenylphenol, or 6-hydroxybenzothiazole (119). Enhanced chemiluminescence, as this phenomenon is termed, has been the basis for several very sensitive immunometric assays that surpass the sensitivity of radioassay (120) techniques and has also been developed for detection of nucleic acid probes ia dot-slot. Southern, and Northern blot formats (121). [Pg.268]

Emissions During Processing. During the production of flexible PVC products plasticizers are exposed for up to several minutes to temperatures of - ISO C. The exact conditions depend on the processing technique employed, but it is evident that the loss of plasticizer by evaporation and degradation can be significant. [Pg.131]

Radiometry. Radiometry is the measurement of radiant electromagnetic energy (17,18,134), considered herein to be the direct detection and spectroscopic analysis of ambient thermal emission, as distinguished from techniques in which the sample is actively probed. At any temperature above absolute zero, some molecules are in thermally populated excited levels, and transitions from these to the ground state radiate energy at characteristic frequencies. Erom Wien s displacement law, T = 2898 //m-K, the emission maximum at 300 K is near 10 fim in the mid-ir. This radiation occurs at just the energies of molecular rovibrational transitions, so thermal emission carries much the same information as an ir absorption spectmm. Detection of the emissions of remote thermal sources is the ultimate passive and noninvasive technique, requiring not even an optical probe of the sampled volume. [Pg.315]


See other pages where The Emission Technique is mentioned: [Pg.27]    [Pg.165]    [Pg.105]    [Pg.49]    [Pg.65]    [Pg.118]    [Pg.395]    [Pg.106]    [Pg.27]    [Pg.165]    [Pg.105]    [Pg.49]    [Pg.65]    [Pg.118]    [Pg.395]    [Pg.106]    [Pg.311]    [Pg.45]    [Pg.59]    [Pg.59]    [Pg.62]    [Pg.62]    [Pg.299]    [Pg.432]    [Pg.218]    [Pg.17]    [Pg.377]    [Pg.368]    [Pg.198]    [Pg.269]    [Pg.48]    [Pg.395]    [Pg.439]    [Pg.95]    [Pg.317]    [Pg.379]    [Pg.557]   


SEARCH



Emission data for the exhaust gas from fettling, using various dedusting techniques

Emission techniques

© 2024 chempedia.info