Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetramethylsilane, TMS

By trapping PX at liquid nitrogen temperature and transferring it to THF at —80° C, the nmr spectmm could be observed (9). It consists of two sharp peaks of equal area at chemical shifts of 5.10 and 6.49 ppm downfield from tetramethylsilane (TMS). The fact that any sharp peaks are observed at all attests to the absence of any significant concentration of unpaired electron spins, such as those that would be contributed by the biradical (11). Furthermore, the chemical shift of the ring protons, 6.49 ppm, is well upheld from the typical aromatic range and more characteristic of an oletinic proton. Thus the olefin stmcture (1) for PX is also supported by nmr. [Pg.429]

J3 4 = 3.45-4.35 J2-4 = 1.25-1.7 and J2-5 = 3.2-3.65 Hz. The technique can be used quantitatively by comparison with standard spectra of materials of known purity. C-nmr spectroscopy of thiophene and thiophene derivatives is also a valuable technique that shows well-defined patterns of spectra. C chemical shifts for thiophene, from tetramethylsilane (TMS), are 127.6, C 125.9, C 125.9, and C 127.6 ppm. [Pg.19]

Gem dmelhylation ot cyclohexane denvatives (vicinal dihalocyciohexanes or methylcyclohexane) with tetramethylsilane (TMS) and AIX3... [Pg.288]

Tetramethylsilane (TMS) [75-76-3] M 88.2, b 26.3, n 1.359, d 0.639. Distilled from cone H2SO4 (after shaking with it) or LiAlH4, through a 5ft vacuum-jacketted column packed with glass helices into an ice-cooled condenser, then percolated through silica gel to remove traces of halide. [Pg.482]

It is convenient to reference the chemical shift to a standard such as tetramethylsilane [TMS, (C//j)4Si] rather than to the proton fC. Thus, a frequency difference (Hz) is measured for a proton or a carbon-13 nucleus of a sample from the H or C resonance of TMS. This value is divided by the absolute value of the Larmor frequency of the standard (e.g. 400 MHz for the protons and 100 MHz for the carbon-13 nuclei of TMS when using a 400 MHz spectrometer), which itself is proportional to the strength Bg of the magnetic field. The chemical shift is therefore given in parts per million (ppm, 5 scale, Sh for protons, 5c for carbon-13 nuclei), because a frequency difference in Hz is divided by a frequency in MHz, these values being in a proportion of 1 1O. ... [Pg.1]

Tetramethylsilane (TMS) (Section 13.4) The molecule (CH3)4Si, used as a standard to calibrate proton and carbon-13 NMR spectra. [Pg.1295]

Shielding constants reported in experimental studies are usually shifts relative to a standard compound, often tetramethylsilane (TMS). In order to compare predicted values to experimental results, we also need to compute the absolute shielding value for TMS, using exactly the same model chemistry. Here is the relevant output for TMS ... [Pg.22]

FIGURE 4.16 Proton NMR spectra of several amino acids. Zero on the chemical shift scale is defined by the resonance of tetramethylsilane (TMS). (Adaptedfrom Atelrkh Library of NMR Spectra. ... [Pg.101]

FIGURE 4.17 A plot of chemical shifts versus pH for the carbons of lysine. Changes in chemical shift are most pronounced for atoms near the titrating groups. Note the correspondence between the p. values and the particular chemical shift changes. All chemical shifts are defined relative to tetramethylsilane (TMS). (From Suprcnant, H., ct at., 1980. [Pg.101]

To define the position of an absorption, the NMR chart is calibrated and a reference point is used. In practice, a small amount of tetramethylsilane [TMS (CH )4Si] Is added to the sample so that a reference absorption peak is produced when the spectrum is run. TMS is used as reference for both l H and 13C measurements because it produces in both a single peak that occurs upfield of other absorptions normally found in organic compounds. The ]H and 13C spectra of methyl acetate in Figure 13.3 have the l MS reference peak indicated. [Pg.445]

The NMR chart is calibrated in delta units (5), where 15=1 ppm of spectrometer frequency. Tetramethylsilane (TMS) is used as a reference point because it shows both 1H and 13C absorptions at unusually high values of the applied magnetic field. The TMS absorption occurs at the right-hand (upfield) side of the chart and is arbitrarily assigned a value of 0 5. [Pg.469]

Chemical shift (Section 13.3) The position on the NMR chart where a nucleus absorbs. By convention, the chemical shift of tetramethylsilane (TMS) is set at zero, and all other absorptions usually occur downfield (to the left on the chart). Chemical shifts are expressed in delta units. 5, w here 1 5 equals 1 ppm of the spectrometer operating frequency. [Pg.1237]

Deshielding (Section 13.2) An effect observed in NMR that causes a nucleus to absorb downfield (to the left) of tetramethylsilane (TMS) standard. Deshielding is caused by a withdrawal of electron density from the nucleus. [Pg.1239]

Melting points, measured in open capillary tubes using a Thomas-Hoover melting point apparatus, are uncorrected. Elemental analyses were performed by Galbraith Laboratories, Knoxville, Tennesee. % and 19C-NMR spectra were generally obtained with an IBM AF-100, if necessary the higher field Bruker WP-200 or AM-400 NMR spectrometer were employed. Chemical shifts are given in parts per million (ppm) on a a scale downfield from tetramethylsilane (TMS). Infrared spectra were recorded with a Perkln-Elmer 283 spectrophotometer. [Pg.8]

Structural Characterization. 13C-NMR Spectra of PGG glucan preparations (15 mg/mL in 0.5 M NaOD) were recorded with a Bruker Model AC 200 at 50.3 MHz and all chemical shifts were expressed in parts per million downfield from an internal tetramethylsilane (TMS) standard. [Pg.47]

NMR measurements also provide information on the coordination of the ligands in the uranyl polymers. Solid-state I c-NMR confirms the coordination modes of the carboxylate ligands to the uranyl ion that is, both monodentate and bidentate carboxylate coordination modes are evident. The uranyl dicarboxyl ate polymers which possess two moles of coordinated DMSO exhibit two carbon-13 carbonyl resonances, one at about 175 ppm downfield from tetramethylsilane (TMS) and one at about 185 ppm. The polymers which possess only one mole of coordinated DMSO exhibit only the carbonyl peak near 185 ppm. Based on other known coordination compounds, the 175 ppm peak can be assigned to monodentate carboxylate and the 185 ppm peak to bidentate carboxylate. Thus, 7-coordination predominates in the polymers with either one or two moles of solvent coordinated to the uranyl ion, which is consistent with the infrared results reported elsewhere (5). [Pg.467]

Polymer Characterization. Proton NMR spectra at 300 MHz were obtained from a Varian HR-300 NMR spectrometer. Deutero-benzene and spectrograde carbon tetrachloride were used as solvents. The concentration of the polymer solutions was about 1-5%, Carbon-13 NMR spectra were obtained from a Varian CFT-20 NMR spectrometer, using deuterochloroform as the solvent for the polymers. The concentration of the solutions was about 5%. Chemical shifts in both proton and carbon-13 spectra were measured in ppm with respect to reference tetramethylsilane (TMS). All spectra were recorded at ambient temperature. [Pg.173]

The carbon-13 NMR spectra of miconazole nitrate were obtained using a Bruker Instrument operating at 75, 100, or 125 MHz. The sample was dissolved in DMSO-d6 and tetramethylsilane (TMS) was added to function as the internal standard. The 13C NMR spectra are shown in Figs. 9 and 10 and the HSQC and HMBC NMR spectra are shown in Figs. 11 and 12, respectively. The DEPT 90 and DEPT 135 are shown in Figs. 13 and 14, respectively. The assignments for the observed resonance bands associated with the various carbons are listed in Table 4. [Pg.12]

Standard Bruker Software was used to execute the recording of DEPT, COSY, and HETCOR spectra. The sample was dissolved in DMSO-d6 and all resonance bands were referenced to tetramethylsilane (TMS) internal standard. The H NMR spectra of primaquine diphosphate are shown in Figs. 5-8. The H NMR assignments of primaquine diphosphate are shown in Table 3. [Pg.159]

Ask about an internal standard. Usually tetramethylsilane (TMS) is chosen because most other proton signals from any sample you might have fall at lower frequencies than that of the protons in TMS. Sometimes hexamethyldisiloxane (HMDS) is used because it doesn t boil... [Pg.278]

Because most common solvents, including water, contain protons, and most NMR analyses involve the measurement of protons, a solvent without protons is generally used in NMR spectroscopy. Commonly, solvents in which the hydrogen atoms are replaced with deuterium (i.e., solvents that have been deuterated) are used, the most common being deuterochloroform. In addition, an internal standard, most commonly tetramethylsilane (TMS), is added to the sample in the NMR sample tube (see Figure 14.3, D) and all absorption features are recorded relative to the absorption due to TMS. [Pg.304]

Signal positions is NMR spectra are referred relative to the signal of a standard, which in organic molecules is usually tetramethylsilane (TMS), (CH3)4 Si. It has 12 equivalent methyl protons and shows one signal at an extremely high field. The NMR signal of most organic compounds appears at a lower field. [Pg.246]

Deshielded proton would give the resonance signal upfleld and a shielded proton would absorb down field. These shifts in the NMR signals are what are known as Chemical shifts. These shifts are measured with reference to a standard which is tetramethylsilane (TMS). [Pg.250]

Tetramethylsilane (TMS) is referred as the standard because of the low electronegativity of silicon, the shielding of equivalent protons in tetramethylsilane is greater than most of the organic compounds. Therefore, the NMR signal for a particular proton in a molecule will appear at different field strengths compared with a signal for TMS ... [Pg.250]

FIGURE 3. The NMR spectra of the two racemic diastereomers of lV-(4-methyl-2-pentyl)-a-methoxy-a-trifluoromethylphenylacetamide prepared from racemic a-methoxy-a-(trifluoromethyl)phenylacetic acid [MTPA, ( )-83] and racemic 4-methyl-2-pentylamine [( )-84] (A) 60-MHz proton spectrum in chloroform-4 with tetramethylsilane (TMS) as the internal standard (B) 94.1-MHz fluorine-19 spectrum in chloroform-4 with trifluoroacetic acid as the internal standard. Reprinted with permission from Reference 76. Copyright (1969) American Chemical Society... [Pg.125]


See other pages where Tetramethylsilane, TMS is mentioned: [Pg.391]    [Pg.470]    [Pg.445]    [Pg.96]    [Pg.17]    [Pg.147]    [Pg.595]    [Pg.606]    [Pg.3]    [Pg.216]    [Pg.274]    [Pg.276]    [Pg.398]    [Pg.422]    [Pg.50]    [Pg.295]    [Pg.301]    [Pg.270]    [Pg.285]    [Pg.294]    [Pg.20]   
See also in sourсe #XX -- [ Pg.288 ]




SEARCH



TMS, tetramethylsilan

Tetramethylsilane

© 2024 chempedia.info