Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetra titanium

Higher alkoxides, such as tetra(2-ethylhexyl) titanate, TYZOR TOT [1070-10-6], can be prepared by alcohol interchange (transestenfication) in a solvent, such as benzene or cyclohexane, to form a volatile a2eotrope with the displaced alcohol, or by a solvent-free process involving vacuum removal of the more volatile displaced alcohol. The affinity of an alcohol for titanium decreases in the order primary > secondary > tertiary, and... [Pg.138]

Titanium Phosphorous Containing Chelates. The reaction of a mixture of mono (alkyl) diacid orthophosphate, di(alkyl)monoacid orthophosphate, and TiCl in a high boiling hydrocarbon solvent such as heptane, with nitrogen-assisted evolution of Hberated HCl, gives a mixture of titanium tetra(mixed alkylphosphate)esters, (H0)(R0)0=P0) Ti(0P=0(0R)2)4 in heptane solution (100). A similar mixture can be prepared by the addition of two moles of P2O5 to mole of TiCl in the presence of six moles of alcohol ... [Pg.147]

Addition of tetra(isopropoxy)titanium results in a slight increase in yield, but does not lead to an exchange of the cation which can be accomplished with tri(isopropoxy)titanium chloride (Section D.1.3.3.3.8.2.3.). In none of these cases could a trace of a second diastereomer be detected112,113. [Pg.244]

On treatment with trimethyl(2-propenyl)silane and titanium(IV) chloride, chiral methyl fi-formylcarboxylates give di- and tetra-substituted y-lactones with moderate to good stereoselectivity. Participation of seven-membered ring chelates was suggested65. [Pg.350]

Enichem made one of the most important steps forward in the development of general heterogeneous oxidation catalysts in the early 1990s with the commercialization of titanium silicate (TS-1) catalysts. TS-1 has a structure similar to ZSM-5 in which the aluminium has been replaced by titanium it is prepared by reaction of tetraethylorthosilicate and tetra-ethylorthotitanate in the presence of an organic base such as tetrapropy-lammonium hydroxide. This catalyst is especially useful for oxidation reactions using hydrogen peroxide (Scheme 4.11), from which the only byproduct is water, clean production of hydroquinone being one of the possibilities. [Pg.102]

In order to obtain compounds with Ti-O-P and Zr-O-P units, the hexaethoxy-derivative, NsPaCOEOg, was treated with titanium and zirconium tetrachlorides. In each case, hygroscopic solids of the type NaPaCOEOiOaMCU (M = Ti or Zr) and ethyl chloride were obtained. The degree of polymerization of these solids was 1.6—1.8, and on the basis of their i.r. and n.m.r. spectra, two alternative structures, (46) and (47), were proposed. In an alternative route to the same type of compound, N3P3CI6 was treated with tetra-n-butoxytitanium in o-xylene. Butyl chloride was liberated and a solid was obtained which has been assigned the structure (48). Its thermal decomposition was studied by differential thermal analysis. [Pg.219]

Colloidal TiOj is made by hydrolysing titanium tetrachloride or titanium tetra-isopropoxide. In the author s laboratory a procedure has been developed which allows one to obtain the colloid as a powder from titanium tetraisopropoxide, after careful evaporation of the solvent The powder can be redissolved to give a transparent... [Pg.149]

Catalysts such as HRuX(PPh3)3, where X is an optically active car-boxylate (e.g., / -mandelate) gave only 0.4% ee using 2-ethylhex-l-ene as substrate (124). Soluble Ziegler-Natta catalysts comprised of triiso-butylaluminum with the optically active alkoxide complex, titanium tetra-(-)-menthoxide, hydrogenated racemic terminal olefins such as 3,4-di-methyl pent- 1-ene, but with zero ee (323). [Pg.361]

SOLINOX SO,. Linde NO,] A process for removing both NOx and SOx from fluegases. The SOx is removed by scrubbing with tetra-ethylene glycol dimethyl ether, circulated in a packed tower (the Selexol process). The NOx is destroyed by Selective Catalytic Reduction ( SCR). The sorbent is regenerated with steam the SOx is recovered for conversion to sulfuric acid. Developed by Linde in 1985 and used in a lead smelter in Austria and several power stations in Germany. In 1990 it was announced that it would be used at the titanium pigment plant in The Netherlands operated by Sachtleben. [Pg.249]

Although the identification of tetrahedrally coordinated, tetra- and tripodal Ti4+ ions on the surface of titanosilicates, as the likely active sites in reactions that require Lewis acidity, seems convincing, the structure and role of the sites active in catalytic oxidation, presumably oxo-titanium species, formed by the interaction of H202 (or H2 + 02) with these surface Ti ions, are not clear. In recent years, this problem has been investigated by FTIR (133), Raman (39,40), XANES (46-48), electronic (54-57), and EPR (51-54) spectroscopies. This is one of the areas in which major progress has been made since the reviews of Notari (33) and Vayssilov (34). Zecchina et al. (153) recently summarized some of the salient features of this progress. [Pg.55]

The presence of two types of titanium sites in TS-1 (tetra- and tripodal) was also suggested by the cyclic voltametry experiments of Bodoardo et al. (158). The tripodal Ti(OSi)3(OH) showed a redox couple at 0 V and the tetrapodal Ti(OSi)4... [Pg.63]

If the tetra- and tripodal Ti structures and the titanium oxo species derived from these structures in the presence of ROOH (R = H, alkyl) are involved as active sites and reaction intermediates, the next step beyond their identification is to seek correlations between the structure and concentrations of these titanium oxo species and catalytic activity and selectivity. Clerici and Ingallina (204) were the first to propose the Ti(02H) group as the active site of alkene epoxidation by... [Pg.150]

The asymmetric dihydroxylation protocol was the second massive contribution by Professor Barry Sharpless to synthetic organic chemistry. The first procedure, introduced with Katsuki, involves the catalytic asymmetric epoxida-tion of allylic alcohols. A typical example is shown in Scheme 17, wherein ( )-allylic alcohol (23) is epoxidized with tert-b utyl hyd roperox ide, in the presence of titanium tetra-isopropoxide and optically active diethyl tartrate to give the... [Pg.21]

The phthalic anhydride/urea process may also be employed to convert tetra-chloro phthalic anhydride to green copper hexadecachloro phthalocyanine by condensation. In this case, titanium or zirconium dioxides, particularly in the form of hydrated gels, are used instead of the molybdenum salts which are used in the phthalic anhydride process [23]. There is a certain disadvantage to the fact that the products lack brilliance and require additional purification. [Pg.436]

Copper Perbromo Phthalocyanine Green may also be obtained from tetra-bromo phthalic anhydride by the phthalic anhydride/urea process in the presence of titanium or zirconium catalysts. This route has not yet been introduced on a commercial scale. [Pg.436]

The aldol condensation of benzaldehyde with the thioacetamide carbanion (RCHCSNRV), derived from the desilylation of the silyl-thioether with tetra-/i-buty-lammonium fluoride, is stereoselective at—80°C producing the erythro isomer of the p-hydroxy thioamide preferentially (Scheme 6.18, R = Me, erythro threo 95 5) via a conformationally mobile intermediate. However, when R is bulky, a greater amount of the threo isomer is formed. Predictably, as the reaction temperature is raised, so the stereoselectively decreases. This procedure contrasts with the corresponding condensation catalysed by titanium salts, where the complexed intermediate produces the threo isomer [47, 48],... [Pg.267]

An important breakthrough in asymmetric epoxidation has been the Katsuki-Sharpless invention [1], The reaction uses a chiral Ti(IV) catalyst, t-butylhydroperoxide as the oxidant and it works only for allylic alcohols as the substrate. In the first report titanium is applied in a stoichiometric amount. The chirality is introduced in the catalyst by reacting titanium tetra-isopropoxide... [Pg.301]

The influence of temperature on the ortho effect has been evaluated in the alkaline hydrolysis in aqueous DMSO solutions of ortho-, meta- and para-substituted phenyl benzoates (26). The alcoholysis of phthalic anhydride (27) to monoalkyl phthalates (28) occurs through an A-2 mechanism via rate-determining attack of the alcohol on a carbonyl carbon of the anhydride (Scheme 4). Evidence adduced for this proposal included highly negative A 5 values and a p value of 4-2.1. In the same study, titanium tetra-n-butoxide and tri-n-butyltin ethanoxide were shown to act as effective catalysts of the half-ester formation from (27), the mechanism involving alkoxy ligand exchange at the metal as an initial step. ... [Pg.41]

Enantioselective epoxidation of allylic alcohols using t-butyl peroxide, titanium tetra-wo-propoxide, and optically pure diethyl tartrate. [Pg.533]


See other pages where Tetra titanium is mentioned: [Pg.202]    [Pg.202]    [Pg.998]    [Pg.27]    [Pg.139]    [Pg.140]    [Pg.148]    [Pg.239]    [Pg.247]    [Pg.128]    [Pg.186]    [Pg.268]    [Pg.213]    [Pg.73]    [Pg.428]    [Pg.298]    [Pg.139]    [Pg.194]    [Pg.271]    [Pg.65]    [Pg.28]    [Pg.158]    [Pg.159]    [Pg.526]    [Pg.265]    [Pg.502]    [Pg.542]   
See also in sourсe #XX -- [ Pg.120 , Pg.121 ]




SEARCH



© 2024 chempedia.info