Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature rhodium

At ordinary temperatures rhodium is stable in air. When heated above 600°C, it oxidizes to Rh203, forming a dark oxide coating on its surface. The gray crystalline sesquioxide has a corundom-like crystal structure. The sesquioxide, Rh203, decomposes back to its elements when heated above... [Pg.791]

Grey-white and soft ductile —thallium, lead somewhat harder, and fusible only at a very high temperature — rhodium, ruthenium, palladium, platinum, iridium. [Pg.29]

Most rhodium alloys are used for industrial or research purposes, such as laboratory equipment and thermocouples. A thermocouple is a device for measuring very high temperatures. Rhodium alloys are also used to coat mirrors and in searchlights because they reflect light very well. Rhodium is sometimes alloyed with other precious metals in the manufacture of jewelry and art objects. [Pg.500]

Capobianco and Drake [18] have presented data for Pd, Ru and Rh partitioning between inel and liquid in a synthetic system (1450 and ISOO C, 1 bar). Palladium was not detectable in the spinels (Dp, < 0.02) of [18], whereas = 22-25, regardless of temperature. Rhodium is jqtpaiently even more compatible in spinel than Ru (Drh 100). Zoning in the spinels of the Rh-doped experiments indicates that Rh enters as MgRli204. In an Fe-bearing system at 12S0°C, for Pd, Ru and Rh increases to 8000,300 and 0.8, respectively [20]. [Pg.24]

Carbon monoxide adsorbs molecularly at low temperatures on all the catalyti-cally relevant metals. When the temperature increases, it dissociates on iron around room temperature, and on cobalt, nickel, and ruthenium at higher temperatures. Rhodium represents a borderline case reaction conditions exist where molecular CO coexists with carbon and oxygen atoms from dissociated CO. When the temperature is sufficiently high, CO can react with adsorbed oxygen to form CO2, which desorbs instantaneously while carbon remains on the surface. This is called the Boudouard reaction. [Pg.77]

The metal is silvery white and at red heat slowly changes in air to the resquioxide. At higher temperatures it converts back to the element. Rhodium has a higher melting point and lower density than platinum. It has a high reflectance and is hard and durable. [Pg.110]

The uncatalyzed addition of hydrogen to an alkene although exothermic is very slow The rate of hydrogenation increases dramatically however m the presence of cer tain finely divided metal catalysts Platinum is the hydrogenation catalyst most often used although palladium nickel and rhodium are also effective Metal catalyzed addi tion of hydrogen is normally rapid at room temperature and the alkane is produced m high yield usually as the only product... [Pg.231]

Hydrogenation of benzene and other arenes is more difficult than hydrogenation of alkenes and alkynes Two of the more active catalysts are rhodium and platinum and it IS possible to hydrogenate arenes m the presence of these catalysts at room temperature and modest pressure Benzene consumes three molar equivalents of hydrogen to give cyclohexane... [Pg.428]

Nickel catalysts although less expensive than rhodium and platinum are also less active Hydrogenation of arenes m the presence of nickel requires high temperatures (100-200°C) and pressures (100 atm)... [Pg.428]

The noble metal thermocouples, Types B, R, and S, are all platinum or platinum-rhodium thermocouples and hence share many of the same characteristics. Metallic vapor diffusion at high temperatures can readily change the platinum wire calibration, hence platinum wires should only be used inside a nonmetallic sheath such as high-purity alumina. [Pg.1216]

Since 1960, the Hquid-phase oxidation of ethylene has been the process of choice for the manufacture of acetaldehyde. There is, however, stiU some commercial production by the partial oxidation of ethyl alcohol and hydration of acetylene. The economics of the various processes are strongly dependent on the prices of the feedstocks. Acetaldehyde is also formed as a coproduct in the high temperature oxidation of butane. A more recently developed rhodium catalyzed process produces acetaldehyde from synthesis gas as a coproduct with ethyl alcohol and acetic acid (83—94). [Pg.51]

CO, and methanol react in the first step in the presence of cobalt carbonyl catalyst and pyridine [110-86-1] to produce methyl pentenoates. A similar second step, but at lower pressure and higher temperature with rhodium catalyst, produces dimethyl adipate [627-93-0]. This is then hydrolyzed to give adipic acid and methanol (135), which is recovered for recycle. Many variations to this basic process exist. Examples are ARCO s palladium/copper-catalyzed oxycarbonylation process (136—138), and Monsanto s palladium and quinone [106-51-4] process, which uses oxygen to reoxidize the by-product... [Pg.244]

Rhodium Ca.ta.lysts. Rhodium carbonyl catalysts for olefin hydroformylation are more active than cobalt carbonyls and can be appHed at lower temperatures and pressures (14). Rhodium hydrocarbonyl [75506-18-2] HRh(CO)4, results in lower -butyraldehyde [123-72-8] to isobutyraldehyde [78-84-2] ratios from propylene [115-07-17, C H, than does cobalt hydrocarbonyl, ie, 50/50 vs 80/20. Ligand-modified rhodium catalysts, HRh(CO)2L2 or HRh(CO)L2, afford /iso-ratios as high as 92/8 the ligand is generally a tertiary phosphine. The rhodium catalyst process was developed joindy by Union Carbide Chemicals, Johnson-Matthey, and Davy Powergas and has been Hcensed to several companies. It is particulady suited to propylene conversion to -butyraldehyde for 2-ethylhexanol production in that by-product isobutyraldehyde is minimized. [Pg.458]

Alloys suitable for castings that ate to be bonded to porcelain must have expansion coefficients matching those of porcelain as well as soHdus temperatures above that at which the ceramic is fired. These ate composed of gold and palladium and small quantities of other constituents silver, calcium, iron, indium, tin, iridium, rhenium, and rhodium. The readily oxidi2able components increase the bond strength with the porcelain by chemical interaction of the oxidi2ed species with the oxide system of the enamel (see Dental materials). [Pg.384]

Finally, selective hydrogenation of the olefinic bond in mesityl oxide is conducted over a fixed-bed catalyst in either the Hquid or vapor phase. In the hquid phase the reaction takes place at 150°C and 0.69 MPa, in the vapor phase the reaction can be conducted at atmospheric pressure and temperatures of 150—170°C. The reaction is highly exothermic and yields 8.37 kJ/mol (65). To prevent temperature mnaways and obtain high selectivity, the conversion per pass is limited in the Hquid phase, and in the vapor phase inert gases often are used to dilute the reactants. The catalysts employed in both vapor- and Hquid-phase processes include nickel (66—76), palladium (77—79), copper (80,81), and rhodium hydride complexes (82). Complete conversion of mesityl oxide can be obtained at selectivities of 95—98%. [Pg.491]

Under severe conditions and at high temperatures, noble metal films may fail by oxidation of the substrate base metal through pores in the film. Improved life may be achieved by first imposing a harder noble metal film, eg, rhodium or platinum—iridium, on the substrate metal. For maximum adhesion, the metal of the intermediate film should ahoy both with the substrate metal and the soft noble-metal lubricating film. This sometimes requires more than one intermediate layer. For example, silver does not ahoy to steel and tends to lack adhesion. A flash of hard nickel bonds weh to the steel but the nickel tends to oxidize and should be coated with rhodium before applying shver of 1—5 p.m thickness. This triplex film then provides better adhesion and gready increased corrosion protection. [Pg.251]

Ligand-Modified Rhodium Process. The triphenylphosphine-modified rhodium oxo process, termed the LP Oxo process, is the industry standard for the hydroformylation of ethylene and propylene as of this writing (ca 1995). It employs a triphenylphosphine [603-35-0] (TPP) (1) modified rhodium catalyst. The process operates at low (0.7—3 MPa (100—450 psi)) pressures and low (80—120°C) temperatures. Suitable sources of rhodium are the alkanoate, 2,4-pentanedionate, or nitrate. A low (60—80 kPa (8.7—11.6 psi)) CO partial pressure and high (10—12%) TPP concentration are critical to obtaining a high (eg, 10 1) normal-to-branched aldehyde ratio. The process, first commercialized in 1976 by Union Carbide Corporation in Ponce, Puerto Rico, has been ficensed worldwide by Union Carbide Corporation and Davy Process Technology. [Pg.467]

High Temperature Properties. There are marked differences in the abihty of PGMs to resist high temperature oxidation. Many technological appHcations, particularly in the form of platinum-based alloys, arise from the resistance of platinum, rhodium, and iridium to oxidation at high temperatures. Osmium and mthenium are not used in oxidation-resistant appHcations owing to the formation of volatile oxides. High temperature oxidation behavior is summarized in Table 4. [Pg.164]

Conditions cited for Rh on alumina hydrogenation of MDA are much less severe, 117 °C and 760 kPA (110 psi) (26). With 550 kPa (80 psi) ammonia partial pressure present ia the hydrogenation of twice-distilled MDA employing 2-propanol solvent at 121°C and 1.3 MPa (190 psi) total pressure, the supported Rh catalyst could be extensively reused (27). Medium pressure (3.9 MPa = 566 psi) and temperature (80°C) hydrogenation usiag iridium yields low trans trans isomer MDCHA (28). Improved selectivity to aUcychc diamine from MDA has been claimed (29) for alumina-supported iridium and rhodium by iatroduciag the tertiary amines l,4-diazabicyclo[2.2.2]octane [280-57-9] and quiaucHdine [100-76-5]. [Pg.209]

A major step in the production of nitric acid [7697-37-2] (qv) is the catalytic oxidation of ammonia to nitric acid and water. Very short contact times on a platinum—rhodium catalyst at temperatures above 650°C are required. [Pg.337]


See other pages where Temperature rhodium is mentioned: [Pg.173]    [Pg.511]    [Pg.139]    [Pg.234]    [Pg.316]    [Pg.173]    [Pg.511]    [Pg.139]    [Pg.234]    [Pg.316]    [Pg.300]    [Pg.46]    [Pg.771]    [Pg.88]    [Pg.252]    [Pg.68]    [Pg.311]    [Pg.133]    [Pg.42]    [Pg.42]    [Pg.42]    [Pg.43]    [Pg.469]    [Pg.163]    [Pg.164]    [Pg.164]    [Pg.164]    [Pg.164]    [Pg.173]    [Pg.173]    [Pg.173]    [Pg.73]    [Pg.200]    [Pg.66]    [Pg.40]    [Pg.402]   
See also in sourсe #XX -- [ Pg.370 ]




SEARCH



Platinum-rhodium alloys high-temperature properties

Rhodium high-temperature properties

Rhodium platinum thermocouples, temperature

Rhodium platinum thermocouples, temperature range

Rhodium reaction temperature

Rhodium temperature dependence

Rhodium vapor pressure, high temperature

Rhodium-ruthenium catalysts temperature-dependence

Temperature iron-rhodium

Temperature rhodium catalysis

© 2024 chempedia.info