Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature experimental conditions

FIGURE 4. 84.7-MHz 19F NMR spectrum of DPPC multilayers as a function of temperature. Experimental conditions were 0.2 wt% 8,8-difluoromyristate and 25 wt% dipalmitoylphosphatidylcholine in D20 buffer 10 000 scans per spectrum. Reprinted with permission from Reference 37. Copyright (1978) American Chemical Society. [Pg.277]

Fig. 29. Packing density, r (nmol cm 2), versus adsorbate concentration at various temperatures. Experimental conditions polycrystalline Pt thin-layer electrode 1M HC104 electrolyte. Reprinted from ref. 60. Fig. 29. Packing density, r (nmol cm 2), versus adsorbate concentration at various temperatures. Experimental conditions polycrystalline Pt thin-layer electrode 1M HC104 electrolyte. Reprinted from ref. 60.
Figure 1. Dependence of conversion and D-mannitol/D-sorbitol ratio (M/S) of the reaction temperature. Experimental conditions catalyst - 45Cu-08, 50 bar, substrate/catalyst = 12.9... Figure 1. Dependence of conversion and D-mannitol/D-sorbitol ratio (M/S) of the reaction temperature. Experimental conditions catalyst - 45Cu-08, 50 bar, substrate/catalyst = 12.9...
Fig. 5 Turbidity temperature profiles of a model genetically engineered pH responding ELP (see [19] for details on bioproduction of this polymer). Box at bottom window of working temperatures. Experimental conditions are given in plot... Fig. 5 Turbidity temperature profiles of a model genetically engineered pH responding ELP (see [19] for details on bioproduction of this polymer). Box at bottom window of working temperatures. Experimental conditions are given in plot...
Static headspace analysis The sample for chromatographic analysis is taken from a closed vessel where the material under study reaches equilibrium with its vapor at a predetermined temperature. Experimental conditions that can influence the results are the temperature and the sample-withdrawal technique. The concentration of the analytes in the gaseous phase can be increased by raising the temperature, adding an electrolyte, and varying the pH. Solutes with low vapor pressures cannot be detected. [Pg.4997]

Figure 4. Rate of consumption of ethylene as a function of time for different temperatures. Experimental conditions P(C2H4) = 10.65 PSI, T = 25 "C ( ), = 55 C ( ). Symbols are experimental data and the line corresponds to the kinetic model. Figure 4. Rate of consumption of ethylene as a function of time for different temperatures. Experimental conditions P(C2H4) = 10.65 PSI, T = 25 "C ( ), = 55 C ( ). Symbols are experimental data and the line corresponds to the kinetic model.
Figure 6.2. Elution profile of lactate dehydrogenase from porcine muscle and total protein with 0.1 M KCl from a Blue Sepharose column with adsorbed poly(N vinyl caprolactam) (a thermosensitive polymer with transition temperature about 35°C). The crude extract was applied on a column at 40°C. Arrow indicates when the column was cooled to room temperature and elution was continued at this temperature. Experimental conditions column 1.3 x 0.9 cm I.D., flow rate 0.17 ml/min, fractions collected every 5 min. Redrawn from ... Figure 6.2. Elution profile of lactate dehydrogenase from porcine muscle and total protein with 0.1 M KCl from a Blue Sepharose column with adsorbed poly(N vinyl caprolactam) (a thermosensitive polymer with transition temperature about 35°C). The crude extract was applied on a column at 40°C. Arrow indicates when the column was cooled to room temperature and elution was continued at this temperature. Experimental conditions column 1.3 x 0.9 cm I.D., flow rate 0.17 ml/min, fractions collected every 5 min. Redrawn from ...
The experimental conditions used to determine the CFPP do not exactly reflect those observed in vehicles the differences are due to the spaces in the filter mesh which are much larger in the laboratory filter, the back-pressure and the cooling rate. Also, research is continuing on procedures that are more representative of the actual behavior of diesel fuel in a vehicle and which correlate better with the temperature said to be operability , the threshold value for the Incident. In 1993, the CEN looked at two new methods, one called SFPP proposed by Exxon Chemicals (David et al., 1993), the other called AGELFI and recommended by Agip, Elf and Fina (Hamon et al., 1993). [Pg.215]

The central quantity of interest in homogeneous nucleation is the nucleation rate J, which gives the number of droplets nucleated per unit volume per unit time for a given supersaturation. The free energy barrier is the dommant factor in detenuining J J depends on it exponentially. Thus, a small difference in the different model predictions for the barrier can lead to orders of magnitude differences in J. Similarly, experimental measurements of J are sensitive to the purity of the sample and to experimental conditions such as temperature. In modem field theories, J has a general fonu... [Pg.753]

Specinfo, from Chemical Concepts, is a factual database information system for spectroscopic data with more than 660000 digital spectra of 150000 associated structures [24], The database covers nuclear magnetic resonance spectra ( H-, C-, N-, O-, F-, P-NMR), infrared spectra (IR), and mass spectra (MS). In addition, experimental conditions (instrument, solvent, temperature), coupling constants, relaxation time, and bibliographic data are included. The data is cross-linked to CAS Registry, Beilstein, and NUMERIGUIDE. [Pg.258]

Some liquids are practically immiscible e.g., water and mercury), whilst others e.g., water and ethyl alcohol or acetone) mix with one another in all proportions. Many examples are known, however, in which the liquids are partially miscible with one another. If, for example, water be added to ether or if ether be added to water and the mixture shaken, solution will take place up to a certain point beyond this point further addition of water on the one hand, or of ether on the other, will result in the formation of two liquid layers, one consisting of a saturated solution of water in ether and the other a saturated solution of ether in water. Two such mutually saturated solutions in equilibrium at a particular temperature are called conjugate solutions. It must be mentioned that there is no essential theoretical difference between liquids of partial and complete miscibility for, as wdll be shown below, the one may pass into the other with change of experimental conditions, such as temperature and, less frequently, of pressure. [Pg.17]

The experimental conditions necessary for the preparation of a solution of a diazonium salt, diazotisation of a primary amine, are as follows. The amine is dissolved in a suitable volume of water containing 2 5-3 equivalents of hydrochloric acid (or of sulphuric acid) by the application of heat if necessary, and the solution is cooled in ice when the amine hydrochloride (or sulphate) usually crystallises. The temperature is maintained at 0-5°, an aqueous solution of sodium nitrite is added portion-wise until, after allowing 3-4 minutes for reaction, the solution gives an immediate positive test for excess of nitrous acid with an external indicator—moist potassium iodide - starch paper f ... [Pg.590]

In addition to the above, cyclic polymers, e.g. (RjSiOln, and also three-dimensional polymers can be formed. The exact nature of the polymer (its structure, and whether it is liquid or solid at room temperatures) will depend upon the substituted chloroalkyl-(or aryl-)silicane, or mixture of substituted silicanes, used and upon the experimental conditions. [Pg.1020]

Dg remains constant over a wide range of resin to liquid ratios. In a relatively short time, by simple equilibration of small known amounts of resin and solution followed by analysis of the phases, the distribution of solutes may be followed under many different sets of experimental conditions. Variables requiring investigation include the capacity and percent cross-linkage of resin, the type of resin itself, the temperature, and the concentration and pH of electrolyte in the equilibrating solution. [Pg.1116]

Random variations in experimental conditions also introduce uncertainty. If a method s sensitivity is highly dependent on experimental conditions, such as temperature, acidity, or reaction time, then slight changes in those conditions may lead to significantly different results. A rugged method is relatively insensitive to changes in experimental conditions. [Pg.42]

Extraction of hemiceUulose is a complex process that alters or degrades hemiceUulose in some manner (11,138). Alkaline reagents that break hydrogen bonds are the most effective solvents but they de-estetify and initiate -elimination reactions. Polar solvents such as DMSO and dimethylformamide are more specific and are used to extract partiaUy acetylated polymers from milled wood or holoceUulose (11,139). Solvent mixtures of increasing solvent power are employed in a sequential manner (138) and advantage is taken of the different behavior of various alkaUes and alkaline complexes under different experimental conditions of extraction, concentration, and temperature (4,140). Some sequences for these elaborate extraction schemes have been summarized (138,139) and an experimenter should optimize them for the material involved and the desired end product (102). [Pg.33]

An automated system for clinical analysis consists of the instmment (hardware), the reagents, and the experimental conditions (time, temperature, etc) required for each deterrnination. The reagents plus the experimental conditions are sometimes referred to as the chemistry of the system. The chemistry employed is generally similar to that used in manual assays because most automated assay methods have been adapted from the manual ones. However, automated analy2ers rarely afford the flexibiUty of experimental procedure that is possible in manual analysis. [Pg.392]

Consistent Data-Recording Procedures. Clear procedures for recording all pertinent data from the experiment must be developed and documented, and unambiguous data recording forms estabUshed. These should include provisions not only for recording the values of the measured responses and the desired experimental conditions, but also the conditions that resulted, if these differ from those plaimed. It is generally preferable to use the values of the actual conditions in the statistical analysis of the experimental results. For example, if a test was supposed to have been conducted at 150°C but was mn at 148.3°C, the actual temperature would be used in the analysis. In experimentation with industrial processes, process equiUbrium should be reached before the responses are measured. This is particularly important when complex chemical reactions are involved. [Pg.522]

The specific resistance coefficient for the dust layer Ko was originally denned by Williams et al. [Heat. Piping Air Cond., 12, 259 (1940)], who proposed estimating values of the coefficient by use of the Kozeny-Carman equation [Carman, Trans. Inst. Chem. Fng. (London), 15, 150 (1937)]. In practice, K and Ko are measured directly in filtration experiments. The K and Ko values can be corrected for temperature by multiplying by the ratio of the gas viscosity at the desired condition to the gas viscosity at the original experimental conditions. Values of Ko determined for certain dfists by Williams et al. (op. cit.) are presented in Table 17-5. [Pg.1600]

As in most. systematically done and well-controlled experimental series, results can be reevaluated later on for additional purposes. In this set, the heat generation rates were evaluated with the help of the heats of reaction, at every temperature used. These in turn formed the basis for evaluation of temperature amaway conditions, as will be shown in Chapter 9. [Pg.103]

In Raman spectroscopy the intensity of scattered radiation depends not only on the polarizability and concentration of the analyte molecules, but also on the optical properties of the sample and the adjustment of the instrument. Absolute Raman intensities are not, therefore, inherently a very accurate measure of concentration. These intensities are, of course, useful for quantification under well-defined experimental conditions and for well characterized samples otherwise relative intensities should be used instead. Raman bands of the major component, the solvent, or another component of known concentration can be used as internal standards. For isotropic phases, intensity ratios of Raman bands of the analyte and the reference compound depend linearly on the concentration ratio over a wide concentration range and are, therefore, very well-suited for quantification. Changes of temperature and the refractive index of the sample can, however, influence Raman intensities, and the band positions can be shifted by different solvation at higher concentrations or... [Pg.259]

It can be argued that cp should be independent of temperature boundary conditions and in the subsequent calculations it is taken as 0.4, based on the experimental data. [Pg.185]

The computation of quantum many-body effects requires additional effort compared to classical cases. This holds in particular if strong collective phenomena such as phase transitions are considered. The path integral approach to critical phenomena allows the computation of collective phenomena at constant temperature — a condition which is preferred experimentally. Due to the link of path integrals to the partition function in statistical physics, methods from the latter — such as Monte Carlo simulation techniques — can be used for efficient computation of quantum effects. [Pg.78]

As noted above, it is very difficult to calculate entropic quantities with any reasonable accmacy within a finite simulation time. It is, however, possible to calculate differences in such quantities. Of special importance is the Gibbs free energy, as it is the natoal thermodynamical quantity under normal experimental conditions (constant temperature and pressme. Table 16.1), but we will illustrate the principle with the Helmholtz free energy instead. As indicated in eq. (16.1) the fundamental problem is the same. There are two commonly used methods for calculating differences in free energy Thermodynamic Perturbation and Thermodynamic Integration. [Pg.380]

Tile chloro derivative 33a (not isolated) interacts with pyridine-2,3-diamine in dichloromethane at room temperature to yield 73 (85%) (93BSB357). A further example deals with the reaction between the salt 39 and benzene-1,2-diamine, which gives an imine 74 (80%) under special experimental conditions (93BSB357). In order for the reaction to work, the salt 39 must be isolated prior to its employment (Section IV,C,8). No traces of the diimines were detected for both cases. However, the experimental conditions were not optimized for this purpose since no more than three equivalents of the diamines were used (Scheme 23). [Pg.208]

Since the Fries rearrangement is a equilibrium reaction, the reverse reaction may be used preparatively under appropriate experimental conditions. An instructive example, which shows how the regioselectivity depends on the reaction temperature, is the rearrangement of m-cresyl acetate 8. At high temperatures the ortho-product 9 is formed, while below 100°C the para-derivative 10 is formed ... [Pg.128]


See other pages where Temperature experimental conditions is mentioned: [Pg.500]    [Pg.500]    [Pg.300]    [Pg.438]    [Pg.500]    [Pg.500]    [Pg.300]    [Pg.438]    [Pg.1103]    [Pg.116]    [Pg.4]    [Pg.103]    [Pg.162]    [Pg.203]    [Pg.114]    [Pg.3]    [Pg.454]    [Pg.389]    [Pg.393]    [Pg.521]    [Pg.320]    [Pg.188]    [Pg.470]    [Pg.30]    [Pg.341]    [Pg.659]    [Pg.16]    [Pg.135]   
See also in sourсe #XX -- [ Pg.412 ]




SEARCH



Experimental conditions

Temperature conditioning

Temperature conditions

© 2024 chempedia.info