Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthetically structured water-soluble

The use of double hydrophilic block copolymers in biomimetic mineralization processes has been investigated in recent years. In contrast to rigid templates (like carbon nanotubes and porous aluminum templates which predefine the final structure) water soluble polymers could be used as soluble species at various hierarchy levels. Usually, in the case of DHBCs, one of the block acts as scaffold for the development of the crystal, while the other acts as a soluble-stabilizing matrix. Therefore, both of the blocks play a crucial role on the development of the crystals. There is a plethora of reports on the emerging bio-inspired mineralization field. Various crystal structures have been presented during the last years, following versatile synthetic routes. A very detailed and illustrious review has been recently given by Colfen [3]. The above review describes in detail all aspects of the specific field. Herein, we present just a few selected examples. [Pg.316]

This review account will summarize latest research results on the design, development and properties of functionalized primary phosphines. In particular, the focus would be centered around recent results from our laboratory on the chemical architecture of heteroatom functionahzed primary bisphosphines. We wiU also discuss synthetic protocols for the formylation reactions of functionalized primary phosphines to produce structurally diverse water-soluble hydroxymethyl phosphines. Finally, we will discuss the utility of carboxylate functionahzed primary bisphosphines for incorporation on to peptides and their potential apphcations in catalysis and biomedicine. [Pg.123]

At another level, water-soluble polyphosphazenes are of interest as plasma extenders. In addition, specific polymers with pendent imidazolyl units have been studied as carrier macromolecules for heme and other iron porphyrins (structures and (44,45). (In structures M and the ellipse and Fe symbol represent heme, hemin, or a synthetic heme analog.)... [Pg.187]

A theoretical prediction of water-soluble polymer solutions is difficult to obtain due to their ability to build up aggregations and associations. A prediction of the viscosity yield is much easier to observe for solutions of synthetic polystyrene due to its simple solution structure. These solutions have been well characterized in other studies [19-23] concerning their chemical composition, molar mass and sample polydispersity. [Pg.8]

A novel polymerized vesicular system for controlled release, which contains a cyclic a-alkoxyacrylate as the polymerizable group on the amphiphilic structure, has been developed. These lipids can be easily polymerized through a free radical process. It has been shown that polymerization improves the stabilities of the synthetic vesicles. In the aqueous system the cyclic acrylate group, which connects the polymerized chain and the amphiphilic structure, can be slowly hydrolyzed to separate the polymer chain and the vesicular system and generate a water-soluble biodegradable polymer. Furthermore, in order to retain the fluidity and to prepare the polymerized vesicles directly from prev lymerized lipids, a hydrophilic spacer has been introduced. [Pg.283]

In the most succinct sense, a hydrogel is simply a hydrophilic polymeric network cross-linked in some fashion to produce an elastic structure. Thus any technique which can be used to create a cross-linked polymer can be used to produce a hydrogel. Copolymerization/cross-linking free radical polymerizations are commonly used to produce hydrogels by reacting hydrophilic monomers with multifunctional cross-linkers. Water-soluble linear polymers of both natural and synthetic origin are cross-linked to form hydrogels in a number of ways ... [Pg.488]

Most companies selling cyanine dyes do not reveal their exact structures. This likely is due to each company keeping proprietary the small synthetic tweaks that create unique fluorescence properties for their dyes. However, some structures are available through published documents, such as patents and early publications (Leung et al., 2005). Figure 9.45 illustrates some of these structures, which may not reflect precisely what any one company actually offers today, but it gives an idea of the types of modifications that can be done to add water solubility and reactivity. [Pg.467]

Chemical structures of the synthetic polymers considered in this study. Polymers c, e and f are not water soluble. [Pg.118]

Most agricultural pyrethroids have a very low vapor pressure (Vp) - around 10 8 mmHg at an ambient temperature - which is usually measured by the gas saturation method [8] and, therefore, its distribution to an air compartment is considered less important, as listed in Table 1. Tsuzuki [27] has improved the modified Watson method to estimate the vapor pressure of pyrethroids with reasonable precision just from their chemical structures. The volatilization from water can be conveniently evaluated by the Henry s law constant defined as vapor pressure divided by water solubility [28] and the small values of synthetic pyrethroids... [Pg.171]

The structures of four of the synthetic carotenoids (beta-carotene, canthaxanthin, beta-apo-8 -carotenol, beta-apo-8 -carotenoic acid) are shown in Fig. 8.2. By virtue of their conjugated double bond structure, they are susceptible to oxidation but formulations with antioxidants were developed to minimize oxidation. Carotenoids are classified as oil soluble but most foods require water soluble colorants thus three approaches were used to provide water dispersible preparations. These included formulation of colloidal suspensions, emulsification of oily solutions, and dispersion in suitable colloids. The Hoffman-LaRoche firm pioneered the development of synthetic carotenoid colorants and they obviously chose candidates with better technological properties. For example, the red canthaxanthin is similar in color to lycopene but much more stable. Carotenoid colorants are appropriate for a wide variety of foods.10 Regulations differ in other countries but the only synthetic carotenoids allowed in foods in the US are beta-carotene, canthaxanthin, and beta-8-carotenol. [Pg.186]

Gel electrophoresis is widely used in the routine analysis and separation of many well-known biopolymers such as proteins or nucleic acids. Little has been reported concerning the use of this methodology for the analysis of synthetic polymers, undoubtedly since in many cases these polymers are not soluble in aqueous solution - a medium normally used for electrophoresis. Even for those water-soluble synthetic polymers, the broad molecular weight dispersities usually associated with traditional polymers generally preclude the use of electrophoretic methods. Dendrimers, however, especially those constructed using semi-controlled or controlled structure synthesis (Chapters 8 and 9), possess narrow molecular weight distribution and those that are sufficiently water solubile, usually are ideal analytes for electrophoretic methods. More specifically, poly(amidoamine) (PAMAM) and related dendrimers have been proven amendable to gel electrophoresis, as will be discussed in this chapter. [Pg.239]

Since the discovery of synthetic dye by Perkin and the establishment of the synthetic organic chemistry industry, a wide variety of synthetic dyes provided a set of choices for staining microbes so that they could be readily examined under the microscope. It is reasonable to suppose that if a dye binds selectively to a microbe much more than to mammalian tissues, then it may be possible to find a dye that selectively harms the microbe and spares the mammal. Paul Ehrlich (figure 1.6) was a medical student who did research in the distribuhon of foreign substances in the body, and he was particularly interested in the influence of chemical structures of different types of molecule in live animals. He observed that acidic dyes with the sulfonic acid function, used by dye manufacturers to enhance water solubility, were unable to penetrate into the brain or fat tissues. [Pg.21]

Since the first series of compounds were poorly soluble in water, the next crucial phase of the project set out to increase the water solubility of the drug candidates in order to increase absorption from the gastrointestinal tract. Further refinements led to a candidate that was not only well absorbed when administered orally to animals, but also had outstanding antimalarial profiles both in vitro and in vivo. In comparison to available semi-synthetic artemisinins, the drug candidate OZ 277 (Scheme 27) exhibits structural simplicity, an economically feasible and scalable synthesis, superior antimalarial activity and an improved pharmaceutical profile. The toxicological profiles are also acceptable and this drug candidate entered first into man studies during 2004. [Pg.1317]


See other pages where Synthetically structured water-soluble is mentioned: [Pg.437]    [Pg.437]    [Pg.193]    [Pg.411]    [Pg.5]    [Pg.75]    [Pg.133]    [Pg.166]    [Pg.180]    [Pg.19]    [Pg.242]    [Pg.83]    [Pg.129]    [Pg.136]    [Pg.253]    [Pg.291]    [Pg.19]    [Pg.26]    [Pg.122]    [Pg.233]    [Pg.168]    [Pg.1015]    [Pg.257]    [Pg.173]    [Pg.72]    [Pg.117]    [Pg.143]    [Pg.143]    [Pg.116]    [Pg.33]    [Pg.595]    [Pg.30]    [Pg.109]    [Pg.170]    [Pg.26]    [Pg.75]   


SEARCH



Solubility structures

Soluble structure

Structural water

Structured water

Synthetic structures

Synthetic water

Water structuring

Water, structure

© 2024 chempedia.info