Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthetic polymers urea-formaldehyde

Uses Mfg. of phenolic and thermosetting resins, furan polymers, urea-formaldehyde resins wetting agent foundry sand binders corrosion-resist, resins intermediate for esterification and etherification paints solvent, plasticizer for phenolic resins solvent for dyes and resins nonreactive epoxy resin diluent vise, reducer, cure promoter, and carrier in amine-cured epoxy resins gel retarder in casein/protein glues polymer sealants/cements synthetic flavoring agent in foods and pharmaceuticals cosmetics ingred. in food-pkg. adhesives... [Pg.1856]

In practice, synthetic polymers are sometimes divided into two classes, thermosetting and thermo-plMtic. Those polymers which in their original condition will fiow and can be moulded by heat and pressime, but which in their finished or cured state cannot be re softened or moulded are known as thermo setting (examples phenol formaldehyde or urea formaldehyde polymer). Thermoplastic polymers can be resoftened and remoulded by heat (examples ethylene polymers and polymers of acrylic esters). [Pg.1014]

Commonly accepted practice restricts the term to plastics that serve engineering purposes and can be processed and reprocessed by injection and extmsion methods. This excludes the so-called specialty plastics, eg, fluorocarbon polymers and infusible film products such as Kapton and Updex polyimide film, and thermosets including phenoHcs, epoxies, urea—formaldehydes, and sdicones, some of which have been termed engineering plastics by other authors (4) (see Elastol rs, synthetic-fluorocarbon elastol rs Eluorine compounds, organic-tdtrafluoroethylenecopolyt rs with ethylene Phenolic resins Epoxy resins Amino resins and plastics). [Pg.261]

As polymer chemistry advanced in the 1930s and 1940s, stronger and more durable synthetic adhesives such as early phenol, resorcinol and urea formaldehydes began to supplant natural glues in wood aircraft manufacture. Around this time however, metal began to replace wood as the dominant material for aircraft manufacture. Aerospace adhesives research and development moved on to focus on metals, primarily aluminum, as the substrates of interest. [Pg.1134]

Amino resins. Llrea, the first recorded, synthetically produced, organic compound, can be reacted with formaldehyde to form polymers called urea-formaldehyde resins or amino resins. Its chemistry is similar to the phenolic resins. [Pg.364]

The broadest classification for plastics is the old thermoplastic and thermosetting . Examples of the former group are polyethylene, polystyrene, and poly-(methyl methacrylate) examples of the latter are urea-formaldehyde condensation polymers, powder coatings based on polyesters, epoxy resins, and vulcanized synthetic elastomers. [Pg.239]

Ammonia is found in the environment as the result of natural and industrial processes. It is released into the environment by the breakdown of organic wastes, and it is a constituent of the soil, the atmosphere, and bodies of water. Ammonia is also a key intermediate in the nitrogen cycle and is a product of amino acid metabolism (WHO 1986). Anhydrous ammonia is used in the production of nitric acid, explosives, synthetic fibers, and fertilizers (Budavari 1989). It is used as a refrigerant as a corrosion inhibitor in the purification of water supplies in steel production as a catalyst for polymers as a preservative for latex and in the production of nitrocellulose, urea formaldehyde, sulfite cooking liquors, and nitroparaffins (ACGIH 1991 Lewis 1993). Ammonium hydroxide (10-35% ammonia) is a major constituent of many cleaning solutions. Ammonia... [Pg.44]

Urea is used in the manufacture of urea-formaldehyde plastics, adhesives, polymers, synthetic fibers, dyes etc. [Pg.36]

The first commercially successful synthetic polymer was phenol-formaldehyde (PF) [Smith, 1899]. The resin was introduced in 1909 by Baekeland as Bakelite . The urea-formaldehyde resins (UF), were discovered in 1884, but production of Beetle moldable resin commenced in 1928. Three years later, Formica , phenolic paper covered with decorative layer protected by UF, was introduced. The thiourea-formaldehyde molding powders were commercialized in 1920, while in 1935, Ciba introduced Cibanite , anihne-formaldehyde (AF) molding materials, then two years later, the melamine-formaldehyde (MF). [Pg.2]

In the early 1920s, experimentation with urea—formaldehyde resins [9011-05-6] in Germany (4) and Austria (5,6) led to the discovery that these resins might be cast into beautiful clear transparent sheets, and it was proposed that this new synthetic material might serve as an organic glass (5,6). In fact, an experimental product called PoUopas was introduced, but lack of sufficient water resistance prevented commercialisation. Melamine—formaldehyde resin [9003-08-1] does have better water resistance but the market for synthetic glass was taken over by new thermoplastic materials such as polystyrene and poly(methyl methacrylate) (see Methacrylic polymers Styrene plastics). [Pg.321]

The first completely synthetic plastic, phenol-formaldehyde, was introduced by L. H. Baekeland in 1909, nearly four decades after J. W. Hyatt had developed a semisynthetic plastic—cellulose nitrate. Both Hyatt and Baekeland invented their plastics by trial and error. Thus the step from the idea of macromolecules to the reality of producing them at will was still not made. It had to wait till the pioneering work of Hermann Staudinger, who, in 1924, proposed linear molecular structures for polystyrene and natural rubber. His work brought recognition to the fact that the macromolecules really are linear polymers. After this it did not take long for other materials to arrive. In 1927 poly(vinyl chloride) (PVC) and cellulose acetate were developed, and 1929 saw the introduction of urea-formaldehyde (UF) resins. [Pg.381]

Isophorone [14.268], [14.269] is an unsaturated cyclic ketone. It consists of a-isophorone [78-59-1] (3,5,5-trimethyl-2-cyclohexen-l-one), which contains about 1-3% of the isomer P-isophorone [471-01-2] (3,5,5-trimethyl-3-cyclohexen-l-one). Isophorone is a stable, water-white liquid with a mild odor that is miscible in all proportions with organic solvents. It dissolves many natural and synthetic resins and polymers, such as poly(vinyl chloride) and vinyl chloride copolymers, poly(vinyI acetate), polyacrylates, polymethacrylates, polystyrene, chlorinated rubber, alkyd resins, saturated and unsaturated polyesters, epoxy resins, cellulose nitrate, cellulose ethers and esters, damar resin (dewaxed), kauri, waxes, fats, oils, phenol-, melamine-, and urea-formaldehyde resins, as well as plant protection agents. However, isophorone does not dissolve polyethylene, polypropylene, polyamides. [Pg.361]

The first fully synthetic polymer to be introduced (1909) was a phenol-formaldehyde resin known as bakelite. Although the reaction had been discovered some twenty years previously, it was only after a careful and systematic study of it that it was properly controlled to give a useful thermosetting resin. In the late 1920s two other types of thermosetting resins followed, namely urea-formaldehyde, and alkyd resins. [Pg.66]

The major industrial developments in organic chemicals initiated in the 1930-1940 period have continued since that time. Most important of all is the introduction of purely synthetic polymers. Table 4.1 shows the growth in importance of these materials over the period 1950 to 1988. Although much of this growth was due to the increased demand for the polymers introduced in the 1930s and 1940s—urea-formaldehyde resins, nylon, polyethylene (low-density), poly(vinyl chloride), and butadiene co-polymers—new polymers... [Pg.69]

Phenol-formaldehyde was reported as the first commercially synthetic polymer (1899) which was introduced as BakeliteT by Baekeland in 1909. This was the period which marked the dawn for the production of commercial synthetic thermosetting polymers. Other advances in the field included the discovery of urea-formaldehyde resins in 1884 and the beginning of their commercialization as Beetle moldable resin in 1928, followed by thiourea-formaldehyde (1920), aniline-formaldehyde (Cibatine by Ciba, 1935) and melamine-formaldehyde (1937) moulding powders. The year 1909 marked the discovery of epoxy compounds by Prileschaiev, which were not used until World War 2. The first thermoset polyesters, invented by Ellis, date back to 1934 and in 1938 was reported their first use in the forms of glass-reinforced materials [1]. [Pg.18]

Urea-formaldehyde polymers n. The cheapest synthetic polymer used as bonding elements between faces and core of a laminated structure. Odian GC (2004) Principles of polymerization. John Wiley and Sons Inc., New York. [Pg.1029]

In order to improve the physical properties of paper, especially strength and resistance to erasure, natural polymers, like starches and gums, are added to the stock, as well as cellulose compounds, like carboxy-methyl cellulose, or synthetic polymers, e.g. polyacrylamides and polyamines. Wet-strength resins, such as polyamide resins, are also often added to the stock. Urea-formaldehyde and melamine-formaldehyde resins are no longer in wider use for improving wet strength. [Pg.1034]

The first completely synthetic plastic material was made from the condensation of phenol and formaldehyde in the presence of a catalyst. The production of this material was perfected by Leo Hendrik Baekland (1863-1944), a Belgian chemist working in the United States, and it was marketed from 1909 under the name Bakelite. Bakelite is a highly crosslinked three-dimensional thermosetting polymer, and in the 1920s and 1930s a number of similar materials were developed such as urea formaldehyde and melamine formaldehyde. [Pg.256]


See other pages where Synthetic polymers urea-formaldehyde is mentioned: [Pg.254]    [Pg.5]    [Pg.229]    [Pg.1140]    [Pg.394]    [Pg.15]    [Pg.229]    [Pg.76]    [Pg.229]    [Pg.1153]    [Pg.467]    [Pg.456]    [Pg.558]    [Pg.1449]    [Pg.360]    [Pg.477]    [Pg.367]    [Pg.1140]    [Pg.75]    [Pg.582]    [Pg.455]    [Pg.4437]    [Pg.507]    [Pg.519]    [Pg.880]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



Formaldehyde polymer

Polymer Synthetic polymers

Synthetic polymers

Urea - formaldehyde polymers

Urea, synthetic

© 2024 chempedia.info