Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

SYNTHESIS naturally occuring

Block, E., Birringer, M., Jiang, W., Nakahodo, T., Thompson, H. J., et al. Allium chemistry synthesis, natural occurence, biological activity, and chemistry of Se-alk(en)ylselenocysteines and their y-glutamyl derivatives and oxidation products. J Agric Food Chem 2001, 49, 458 470. Das, A., Desai, D., Pittman, B., Amin, S., El-Bayoumy, K. Comparison of the chemopreventive efficacies of l,4-phenylenebis(methylene)selenocyanate and selenium-enriched yeast on 4-(methylnitrosamino)-l-(3-pyridyl)-l-butanone induced lung tumorigenesis in A/J mouse. Nutr Cancer 2003, 46, 179-185. [Pg.269]

Most reactions in cells are carried out by enzymes [1], In many instances the rates of enzyme-catalysed reactions are enhanced by a factor of a million. A significantly large fraction of all known enzymes are proteins which are made from twenty naturally occurring amino acids. The amino acids are linked by peptide bonds to fonn polypeptide chains. The primary sequence of a protein specifies the linear order in which the amino acids are linked. To carry out the catalytic activity the linear sequence has to fold to a well defined tliree-dimensional (3D) stmcture. In cells only a relatively small fraction of proteins require assistance from chaperones (helper proteins) [2]. Even in the complicated cellular environment most proteins fold spontaneously upon synthesis. The detennination of the 3D folded stmcture from the one-dimensional primary sequence is the most popular protein folding problem. [Pg.2642]

Clearly, there is a need for techniques which provide access to enantiomerically pure compounds. There are a number of methods by which this goal can be achieved . One can start from naturally occurring enantiomerically pure compounds (the chiral pool). Alternatively, racemic mixtures can be separated via kinetic resolutions or via conversion into diastereomers which can be separated by crystallisation. Finally, enantiomerically pure compounds can be obtained through asymmetric synthesis. One possibility is the use of chiral auxiliaries derived from the chiral pool. The most elegant metliod, however, is enantioselective catalysis. In this method only a catalytic quantity of enantiomerically pure material suffices to convert achiral starting materials into, ideally, enantiomerically pure products. This approach has found application in a large number of organic... [Pg.77]

Synthesis The Diels-Alder reaction is simply the dimerisation of isoprene to giye the naturally occurring terpene A. Now we haye to cleaye one double bond and leaye the other alone. It turns out that epoxidation is selectiye in this case. [Pg.62]

In MeOH, l,4-dimethoxy-2-cyclohexene (379) is obtainejl from 1,3-cydo-hexadiene[315]. Acetoxylation and the intramolecular alkoxylation took place in the synthesis of the naturally occurring tetrahydrofuran derivative 380 and is another example of the selective introduction of different nucleo-philes[316]. In intramolecular 1,4-oxyacetoxylation to form the fused tetrahy-drofurans and tetrahydropyrans 381, cis addition takes place in the presence of a catalytic amount of LiCI, whereas the trans product is obtained in its absence[317]. The stereocontrolled oxaspirocyclization proceeds to afford the Irons product 382 in the presence of Li2C03 and the cis product in the presence of LiCl[ 318,319]. [Pg.70]

The intramolecular version for synthesizing cyclic and polycyclic compounds offers a powerful synthetic method for naturally occurring macrocyclic and polycyclic compounds, and novel total syntheses of many naturally occurring complex molecules have been achieved by synthetic designs based on this methodology. Cyclization by the coupling of an enone and alkenyl iodide has been applied to the synthesis of a model compound of l6-membered car-bomycin B 162 in 55% yield. A stoichiometric amount of the catalyst was used because the reaction was carried out under high dilution conditions[132]. [Pg.151]

Carbonylation of halides in the presence of primary and secondary amines at I atm affords amides[351j. The intramolecular carbonylation of an aryl bromide which has amino group affords a lactam and has been used for the synthesis of the isoquinoline alkaloid 498(352], The naturally occurring seven-membered lactam 499 (tomaymycin, neothramycin) is prepared by this method(353]. The a-methylene-d-lactam 500 is formed by the intramolecular carbonylation of 2-bromo-3-alkylamino-l-propene(354]. [Pg.196]

In the total synthesis of the naturally occurring big molecule of palytoxin, which has numerous labile functional groups, this coupling is the most useful for the creation of E, Z-conjugated diene part 653. In this case, thallium hydroxide as a base accelerates the reaction 1000 times more than KOH[523]. Even TECOj can be used instead of a strong base in other cases[524]. [Pg.222]

Molecules with chirality centers are very common both as naturally occurring sub stances and as the products of chemical synthesis (Carbons that are part of a double bond or a triple bond can t be chirality centers)... [Pg.284]

Miscellaneous Pharmaceutical Processes. Solvent extraction is used for the preparation of many products that ate either isolated from naturally occurring materials or purified during synthesis. Among these are sulfa dmgs, methaqualone [72-44-6] phenobarbital [50-06-6] antihistamines, cortisone [53-06-5] estrogens and other hormones (qv), and reserpine [50-55-5] and alkaloids (qv). Common solvents for these appHcations are chloroform, isoamyl alcohol, diethyl ether, and methylene chloride. Distribution coefficient data for dmg species are important for the design of solvent extraction procedures. These can be determined with a laboratory continuous extraction system (AKUEVE) (244). [Pg.79]

Among chiral dialkylboranes, diisopinocampheylborane (8) is the most important and best-studied asymmetric hydroborating agent. It is obtained in both enantiomeric forms from naturally occurring a-pinene. Several procedures for its synthesis have been developed (151—153). The most convenient one, providing product of essentially 100% ee, involves the hydroboration of a-pinene with borane—dimethyl sulfide in tetrahydrofuran (154). Other chiral dialkylboranes derived from terpenes, eg, 2- and 3-carene (155), limonene (156), and longifolene (157,158), can also be prepared by controlled hydroboration. A more tedious approach to chiral dialkylboranes is based on the resolution of racemates. /n j -2,5-Dimethylborolane, which shows excellent enantioselectivity in the hydroboration of all principal classes of prochiral alkenes except 1,1-disubstituted terminal double bonds, has been... [Pg.311]

Lactic acid [50-21-5] (2-hydroxypropanoic acid), CH CHOHCOOH, is the most widely occurring hydroxycarboxylic acid and thus is the principal topic of this article. It was first discovered ia 1780 by the Swedish chemist Scheele. Lactic acid is a naturally occurring organic acid that can be produced by fermentation or chemical synthesis. It is present ia many foods both naturally or as a product of in situ microbial fermentation, as ia sauerkraut, yogurt, buttermilk, sourdough breads, and many other fermented foods. Lactic acid is also a principal metaboHc iatermediate ia most living organisms, from anaerobic prokaryotes to humans. [Pg.511]

An asymmetric synthesis of estrone begins with an asymmetric Michael addition of lithium enolate (178) to the scalemic sulfoxide (179). Direct treatment of the cmde Michael adduct with y /i7-chloroperbenzoic acid to oxidize the sulfoxide to a sulfone, followed by reductive removal of the bromine affords (180, X = a and PH R = H) in over 90% yield. Similarly to the conversion of (175) to (176), base-catalyzed epimerization of (180) produces an 85% isolated yield of (181, X = /5H R = H). C8 and C14 of (181) have the same relative and absolute stereochemistry as that of the naturally occurring steroids. Methylation of (181) provides (182). A (CH2)2CuLi-induced reductive cleavage of sulfone (182) followed by stereoselective alkylation of the resultant enolate with an allyl bromide yields (183). Ozonolysis of (183) produces (184) (wherein the aldehydric oxygen is by isopropyUdene) in 68% yield. Compound (184) is the optically active form of Ziegler s intermediate (176), and is converted to (+)-estrone in 6.3% overall yield and >95% enantiomeric excess (200). [Pg.436]

Cysteine [52-90 ] is a thiol-bearing amino acid which is readily isolated from the hydrolysis of protein. There ate only small amounts of cysteine and its disulfide, cystine, in living tissue (7). Glutathione [70-18-8] contains a mercaptomethyl group, HSCH2, and is a commonly found tripeptide in plants and animals. Coenzyme A [85-61-0] is another naturally occurring thiol that plays a central role in the synthesis and degradation of fatty acids. [Pg.9]

In common with the naturally occurring carbapenem thienamycin (2), the introduction of the /n j -6-[l-(R)-hydroxyethyi] group had a profound effect on the biological properties of the penems. This, together with an indication from an early study (93) that, as with other P-lactams, the 5(R)-enantiomer was solely responsible for antibacterial activity, provided impetus for the development of methods for the synthesis of chiral penems. [Pg.10]

Garbapenem P-Lactamase Inhibitors. Carbapenems are another class of natural product P-lactamase inhibitors discovered about the same time as clavulanic acid. Over forty naturally occurring carbapenems have been identified many are potent P-lactamase inhibitors. Garbapenem is the trivial name for the l-a2abicyclo[3.2.0]hept-2-ene ring system (21) shown in Table 3. The synthesis (74), biosynthesis (75), and P-lactamase inhibitory properties (13,14,66) of carbapenems have been reviewed. Carbapenems are often more potent than clavulanic acid and include type I Cephases in the spectmm of inhibition. Table 3 Hsts the available P-lactamase inhibition data. Synergy is frequendy difficult to demonstrate because the compounds are often potent antibacterials. [Pg.49]

All of the naturally-occurring monobactams discovered as of this writing have exhibited poor antibacterial activity. However, as in the case of the penicillins and cephalosporins, alteration of the C-3 amide side chain led to many potent new compounds (12). Furthermore, the monobactam nucleus provides a unique opportunity to study the effect of stmctural modifications at the N-1 and C-4 positions of the a2etidinone ring on biological activity. In contrast to the bicycHc P-lactams, these positions on the monocyclic ring system are readily accessible by synthesis. [Pg.62]

Oxeta.nocins, Oxetanocia A (49), formerly oxetanocia, is the first naturally occurring oxetanose derivative and is isolated from Bacillus megaterium (1,145). It inhibits gram-positive bacteria, herpes vimses, and human immunodeficiency vims (HIV) (146). The chemical synthesis of (49) and several derivatives has been reported (147). [Pg.123]

DiaZepin Nucleosides. Four naturally occurring dia2epin nucleosides, coformycin (58), 2 -deoxycoformycin (59), adechlorin or 2 -chloro-2 -deoxycoformycin (60), and adecypenol (61), have been isolated (1—4,174,175). The biosynthesis of (59) and (60) have been reported to proceed from adenosine and C-1 of D-ribose (30,176,177). They are strong inhibitors of adenosine deaminase and AMP deaminase (178). Compound (58) protects adenosine and formycin (12) from deamination by adenosine deaminase. Advanced hairy cell leukemia has shown rapid response to (59) with or without a-or P-interferon treatment (179—187). In addition, (59) affects interleukin-2 production, receptor expression on human T-ceUs, DNA repair synthesis, immunosuppression, natural killer cell activity, and cytokine production (188—194). [Pg.124]


See other pages where SYNTHESIS naturally occuring is mentioned: [Pg.208]    [Pg.699]    [Pg.1325]    [Pg.208]    [Pg.699]    [Pg.1325]    [Pg.289]    [Pg.299]    [Pg.175]    [Pg.368]    [Pg.1030]    [Pg.16]    [Pg.93]    [Pg.206]    [Pg.206]    [Pg.551]    [Pg.240]    [Pg.55]    [Pg.208]    [Pg.213]    [Pg.494]    [Pg.157]    [Pg.206]    [Pg.286]    [Pg.313]    [Pg.81]    [Pg.10]    [Pg.36]    [Pg.118]    [Pg.118]    [Pg.122]    [Pg.158]    [Pg.284]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 ]

See also in sourсe #XX -- [ Pg.2 , Pg.3 ]




SEARCH



Natural Occurence

Naturally-occurring

© 2024 chempedia.info