Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface vibration films

Thus the entropy of localized adsorption can range widely, depending on whether the site is viewed as equivalent to a strong adsorption bond of negligible entropy or as a potential box plus a weak bond (see Ref. 12). In addition, estimates of AS ds should include possible surface vibrational contributions in the case of mobile adsorption, and all calculations are faced with possible contributions from a loss in rotational entropy on adsorption as well as from change in the adsorbent structure following adsorption (see Section XVI-4B). These uncertainties make it virtually impossible to affirm what the state of an adsorbed film is from entropy measurements alone for this, additional independent information about surface mobility and vibrational surface states is needed. (However, see Ref. 15 for a somewhat more optimistic conclusion.)... [Pg.613]

In 1987 he was promoted to distinguished member of the technical staff and technical manager. His efforts broadened to include projects on polymer-surface interactions adhesion promotion corrosion protection chemical vapor deposition and thin film growth optical fiber coating synthesis, structure, and reactivity of model organic surfaces and time-resolved surface vibrational spectroscopy. [Pg.121]

At the time of a recent review [9], there remained very few examples of vibrational studies of adsorbate, or localised substrate modes, at metal oxide surfaces. By far the majority of studies concerned the characterisation by HREELS of phonon modes (such as Fuchs-Kliewer modes) pertaining to the properties of the bulk structure, rather than the surface, or to electronic transitions. Such studies have been excluded from this review in order to concentrate on the vibrational spectroscopy of surface vibrations on well-characterised metal oxide surfaces such as single crystals or epitaxially grown oxide films, for which there is now a substantial literature. Nevertheless, it is important to briefly describe the electronic and phonon properties of oxides in order to understand the constraints and difficulties in carrying out RAIRS and HREELS with sufficient sensitivity to observe adsorbate vibrations, and more localised substrate vibrational modes. [Pg.515]

Hydrogen and deuterium composition profile Vibrational spectra of polymer surface adjacent to ATR-crystal surface Vibrational spectra of thin films and absorbed layers... [Pg.25]

The availability of synchrotron radiation sources has stimulated the development of interfacial characterization techniques based on scattmng of x-rays and photoelectrons. For example, near-edge x-ray absorption fine structure (NEXAFS) analysis of surface monolayer films gives information on molecular orientation that is complementary to that usually obtained by vibrational spectroscopy. X-ray diffraction from interfaces, in particular x-ray standing wave techniques, now appear to be very promising as tools for providing vertical profiles of well-ordered surface structures at angstrom resolutions. ... [Pg.7]

Vibrational Spectroscopy. Infrared absorption spectra may be obtained using convention IR or FTIR instrumentation the catalyst may be present as a compressed disk, allowing transmission spectroscopy. If the surface area is high, there can be enough chemisorbed species for their spectra to be recorded. This approach is widely used to follow actual catalyzed reactions see, for example. Refs. 26 (metal oxide catalysts) and 27 (zeolitic catalysts). Diffuse reflectance infrared reflection spectroscopy (DRIFT S) may be used on films [e.g.. Ref. 28—Si02 films on Mo(llO)]. Laser Raman spectroscopy (e.g.. Refs. 29, 30) and infrared emission spectroscopy may give greater detail [31]. [Pg.689]

Yang W H, Hulteen J 0, Schatz G G and Van Duyne R P 1996 A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments experiments and theory J. Chem. Phys. 104 4313-26... [Pg.1228]

Figure 7 HREELS vibrational spectra of the interface formation between a polyimida film and evaporated aluminum (a) ciean polyimida surface (b) with 1/10 layer of Al (c) withi /2 layer of Al. ... Figure 7 HREELS vibrational spectra of the interface formation between a polyimida film and evaporated aluminum (a) ciean polyimida surface (b) with 1/10 layer of Al (c) withi /2 layer of Al. ...
RAIRS spectra contain absorption band structures related to electronic transitions and vibrations of the bulk, the surface, or adsorbed molecules. In reflectance spectroscopy the ahsorhance is usually determined hy calculating -log(Rs/Ro), where Rs represents the reflectance from the adsorhate-covered substrate and Rq is the reflectance from the bare substrate. For thin films with strong dipole oscillators, the Berre-man effect, which can lead to an additional feature in the reflectance spectrum, must also be considered (Sect. 4.9 Ellipsometry). The frequencies, intensities, full widths at half maximum, and band line-shapes in the absorption spectrum yield information about adsorption states, chemical environment, ordering effects, and vibrational coupling. [Pg.251]

For films on non-metallic substrates (semiconductors, dielectrics) the situation is much more complex. In contrast with metallic surfaces both parallel and perpendicular vibrational components of the adsorbate can be detected. The sign and intensity of RAIRS-bands depend heavily on the angle of incidence, on the polarization of the radiation, and on the orientation of vibrational transition moments [4.267]. [Pg.251]

Plain slideways are preferred in the majority of applications. Only a thin film of lubricant is present, so its properties - especially its viscosity, adhesion and extreme-pressure characteristics - are of vital importance. If lubrication breaks down intermittently, a condition is created known as stick-slip , which affects surface finish, causes vibration and chatter and makes close limits difficult to hold. Special adhesive additives are incorporated into the lubricant to provide good bonding of the oil film to the sliding surfaces, which helps to overcome the problems of table and slideway lubrication. On long traverses, oil may be fed through grooves in the underside of the slideway. [Pg.866]

Applications Although a wide range of metals can be sputtered, the method is often commercially restricted by the low rate of deposition. Applications include the coating of insulating surfaces, e.g. of crystal vibrators, to render them electrically conducting, and the manufacture of some selenium rectifiers. The micro-electronics industry now makes considerable use of sputtering in the production of thin-film resistors and capacitors . ... [Pg.442]

Novotny et al. [41] used p-polarized reflection and modulated polarization infrared spectroscopy to examine the conformation of 1 -1,000 nm thick liquid polyperfluoropropy-lene oxide (PPFPO) on various solid surfaces, such as gold, silver, and silica surfaces. They found that the peak frequencies and relative intensities in the vibration spectra from thin polymer films were different from those from the bulk, suggesting that the molecular arrangement in the polymer hlms deviated from the bulk conformation. A two-layer model has been proposed where the hlms are composed of interfacial and bulk layers. The interfacial layer, with a thickness of 1-2 monolayers, has the molecular chains preferentially extended along the surface while the second layer above exhibits a normal bulk polymer conformation. [Pg.226]

Microscopy methods based on nonlinear optical phenomena that provide chemical information are a recent development. Infrared snm-frequency microscopy has been demonstrated for LB films of arachidic acid, allowing for surface-specific imaging of the lateral distribution of a selected vibrational mode, the asymmetric methyl stretch [60]. The method is sensitive to the snrface distribntion of the functional gronp as well as to lateral variations in the gronp environmental and conformation. Second-harmonic generation (SHG) microscopy has also been demonstrated for both spread monolayers and LB films of dye molecules [61,62]. The method images the molecular density and orientation field with optical resolution, and local qnantitative information can be extracted. [Pg.67]

Fig.2 shows the infrared absorption spectrum of the tin oxide film. In order to analyze the molecular structure of the deposited film, we deposited the tin oxide film on a KBr disc with thickness of 1 mm and diameter of 13 mm. Various peaks formed by surface reaction are observed including O-H stretching mode at 3400 cm, C=C stretching mode at 1648 cm, and Sn02 vibration mode at 530 cm. The formation of sp structure with graphite-like is due to ion bombardment with hydrogen ions at the surface and plasma polymerization of methyl group with sp -CHa. [Pg.386]

A number of solid compounds have been examined with this time-domain method since the first report of coherent phonons in GaAs [10]. Coherent phonons were created at the metal/semiconductor interface of a GaP photodiode [29] and stacked GaInP/GaAs/GalnP layers [30]. Cesium-deposited [31-33] and potassium-deposited [34] Pt surfaces were extensively studied. Manipulation of vibrational coherence was further demonstrated on Cs/Pt using pump pulse trains [35-37]. Magnetic properties were studied on Gd films [38, 39]. [Pg.109]


See other pages where Surface vibration films is mentioned: [Pg.1264]    [Pg.286]    [Pg.249]    [Pg.187]    [Pg.286]    [Pg.382]    [Pg.286]    [Pg.207]    [Pg.3076]    [Pg.1264]    [Pg.151]    [Pg.219]    [Pg.193]    [Pg.141]    [Pg.286]    [Pg.32]    [Pg.552]    [Pg.1716]    [Pg.269]    [Pg.399]    [Pg.130]    [Pg.385]    [Pg.418]    [Pg.368]    [Pg.377]    [Pg.230]    [Pg.242]    [Pg.113]    [Pg.178]    [Pg.70]    [Pg.367]    [Pg.397]   
See also in sourсe #XX -- [ Pg.191 , Pg.192 , Pg.193 , Pg.194 , Pg.195 , Pg.196 , Pg.197 , Pg.198 , Pg.199 , Pg.200 , Pg.201 , Pg.202 , Pg.203 , Pg.204 ]




SEARCH



Surface films

Surface vibrations

© 2024 chempedia.info