Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer-surface interactions

Type of interaction Polymer surface interaction Other conditions... [Pg.43]

Microwave or radio frequencies above 1 MHz that are appHed to a gas under low pressure produce high energy electrons, which can interact with organic substrates in the vapor and soHd state to produce a wide variety of reactive intermediate species cations, anions, excited states, radicals, and ion radicals. These intermediates can combine or react with other substrates to form cross-linked polymer surfaces and cross-linked coatings or films (22,23,29). [Pg.424]

Surface properties are generally considered to be controlled by the outermost 0.5—1.0 nm at a polymer film (344). A logical solution, therefore, is to use self-assembled monolayers (SAMs) as model polymer surfaces. To understand fully the breadth of surface interactions, a portfoHo of chemical functionahties is needed. SAMs are especially suited for the studies of interfacial phenomena owing to the fine control of surface functional group concentration. [Pg.544]

Israelachvili and his colleagues have used the SEA to study the interactions between surface layers of surfactant and of other molecules representing functionalised polymer chains, adhesion promoters or additives. Typically a monolayer of the molecule concerned is deposited onto cleaved mica sheets. The values of surface energies obtained from the JKR equation (Eq. 18) throw some interesting light on the nature and roughness of surface layers in contact. [Pg.341]

In the many reports on photoelectron spectroscopy, studies on the interface formation between PPVs and metals, focus mainly on the two most commonly used top electrode metals in polymer light emitting device structures, namely aluminum [55-62] and calcium [62-67]. Other metals studied include chromium [55, 68], gold [69], nickel [69], sodium [70, 71], and rubidium [72], For the cases of nickel, gold, and chromium deposited on top of the polymer surfaces, interactions with the polymers are reported [55, 68]. In the case of the interface between PPV on top of metallic chromium, however, no interaction with the polymer was detected [55]. The results concerning the interaction between chromium and PPV indicates two different effects, namely the polymer-on-metal versus the metal-on-polymer interface formation. Next, the PPV interface formation with aluminum and calcium will be discussed in more detail. [Pg.78]

In the following paper, the possibility of equilibration of the primarily adsorbed portions of polymer was analyzed [20]. The surface coupling constant (k0) was introduced to characterize the polymer-surface interaction. The constant k0 includes an electrostatic interaction term, thus being k0 > 1 for polyelectrolytes and k0 1 for neutral polymers. It was found that, theoretically, the adsorption characteristics do not depend on the equilibration processes for k0 > 1. In contrast, for neutral polymers (k0 < 1), the difference between the equilibrium and non-equilibrium modes could be considerable. As more polymer is adsorbed, excluded-volume effects will swell out the loops of the adsorbate, so that the mutual reorientation of the polymer chains occurs. [Pg.139]

The results obtained demonstrate competition between the entropy favouring binding at bumps and the potential most likely to favour binding at dips of the surface. For a range of pairwise-additive, power-law interactions, it was found that the effect of the potential dominates, but in the (non-additive) limit of a surface of much higher dielectric constant than in solution the entropy effects win. Thus, the preferential binding of the polymer to the protuberances of a metallic surface was predicted [22]. Besides, this theory indirectly assumes the occupation of bumps by the weakly attracted neutral macromolecules capable of covalent interaction with surface functions. [Pg.140]

Besides crystalline order and structure, the chain conformation and segment orientation of polymer molecules in the vicinity of the surface are also expected to be modified due to the specific interaction and boundary condition at the surface between polymers and air (Fig. 1 a). According to detailed computer simulations [127, 128], the chain conformation at the free polymer surface is disturbed over a distance corresponding approximately to the radius of gyration of one chain. The chain segments in the outermost layers are expected to be oriented parallel to the surface and chain ends will be enriched at the surface. Experiments on the chain conformation in this region are not available, but might be feasible with evanescent wave techniques described previously. Surface structure on a micrometer scale is observed with IR-ATR techniques [129],... [Pg.384]

Moreover, the interaction of the surface of the fillter with the matrix is usually a procedure much more complicated than a simple mechanical effect. The presence of a filler actually restricts the segmental and molecular mobility of the polymeric matrix, as adsorption-interaction in polymer surface-layers into filler-particles occurs. It is then obvious that, under these conditions, the quality of adhesion can hardly be quantified and a more thorough investigation is necessary. [Pg.150]

The deposition-reduction (DR) method is based on the weak electrostatic interactions of polymer surfaces with the oppositely charged Au(III) complex ions, leading to the reduction of Au(III) exclusively on the polymer surfaces. Appropriate anionic or cationic Au(III) precursors are chosen based on the zeta potentials of polymer supports (Figure 3.6) [43]. [Pg.60]

The effects of calcium on polymer-solvent and polymer-surface interactions are dependent on polymer ionicity a maximum intrinsic viscosity and a minimum adsorption density as a function of polymer ionicity are obtained. For xanthan, on the other hand, no influence of specific polymer-calcium interaction is detected either on solution or on adsorption properties, and the increase in adsorption due to calcium addition is mainly due to reduction in electrostatic repulsion. The maximum adsorption density of xanthan is also found to be independent of the nature of the adsorbent surface, and the value is close to that calculated for a closely-packed monolayer of aligned molecules. [Pg.227]

D protein arrays based on biotin-streptavidin architectures are likely to be the system of choice due to their ease in handling, excellent signal-to-noise ratio and non-specific interactions. 3D surfaces based on porous gold, sol-gel materials, polymer brushes and dextran surfaces are widely used to mimic the properties of bulk solution and increase the immobilization capacity of proteins. [Pg.489]

Lee JH, Khang G, Lee JW, Lee HB (1998) Interaction of different types of cells on polymer surfaces with wettability gradient. J Colloid Interface Sci 205 323-330... [Pg.196]

Of course, many investigators have realised that changes in solvent may not only affect the x parameter, but also the effective polymer/surface interaction, expressed by the adsorption... [Pg.53]


See other pages where Polymer-surface interactions is mentioned: [Pg.76]    [Pg.76]    [Pg.2627]    [Pg.44]    [Pg.460]    [Pg.541]    [Pg.553]    [Pg.534]    [Pg.133]    [Pg.446]    [Pg.385]    [Pg.140]    [Pg.59]    [Pg.66]    [Pg.361]    [Pg.366]    [Pg.69]    [Pg.69]    [Pg.48]    [Pg.802]    [Pg.872]    [Pg.923]    [Pg.60]    [Pg.61]    [Pg.34]    [Pg.105]    [Pg.18]    [Pg.461]    [Pg.237]    [Pg.220]    [Pg.195]    [Pg.596]    [Pg.40]    [Pg.104]    [Pg.54]    [Pg.57]    [Pg.170]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



Interacting Surface

Polymers interactions

© 2024 chempedia.info