Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface reactants mobility

Bimolecular surface reaction mobile reactants rotating activated complex (42)... [Pg.104]

The theoretical and mechanistic explanations of compensation behavior mentioned above contain common features. The factors to which references are made most frequently in this context are surface heterogeneity, in one form or another, and the occurrence of two or more concurrent reactions. The theoretical implications of these interpretations and the application of such models to particular reaction systems has been discussed fairly fully in the literature. The kinetic consequence of the alternative general model, that there are variations in the temperature dependence of reactant availability (reactant surface concentrations, mobilities, and active areas Section 5) has, however, been much less thoroughly explored. [Pg.256]

In the second stage, diffusion process dominates the network formation as the reactants mobility is greatly reduced by polymerized networks. The incorporation of nano-alumina particles to the epoxy-amine system has an accelerating effect on the curing reaction. In this case, both physical interaction and chemical interaction at the nanoparticle surface are possible. [Pg.287]

The sequence of events in a surface-catalyzed reaction comprises (1) diffusion of reactants to the surface (usually considered to be fast) (2) adsorption of the reactants on the surface (slow if activated) (3) surface diffusion of reactants to active sites (if the adsorption is mobile) (4) reaction of the adsorbed species (often rate-determining) (5) desorption of the reaction products (often slow) and (6) diffusion of the products away from the surface. Processes 1 and 6 may be rate-determining where one is dealing with a porous catalyst [197]. The situation is illustrated in Fig. XVIII-22 (see also Ref. 198 notice in the figure the variety of processes that may be present). [Pg.720]

The flux of flie adsorbed species to die catalyst from flie gaseous phase affects die catalytic activity because die fractional coverage by die reactants on die surface of die catalyst, which is determined by die heat of adsorption, also determines die amount of uncovered surface and hence die reactive area of die catalyst. Strong adsorption of a reactant usually leads to high coverage, accompanied by a low mobility of die adsorbed species on die surface, which... [Pg.118]

M. Tammaro, M. Sabella, J. W. Evans. Hybrid treatment of spatio-temporal behavior in surface reactions with coexisting immobile and highly mobile reactants. J Chem Phys 705 10277-10285, 1995. [Pg.431]

A quite different approach was introduced in the early 1980s [44-46], in which a dense solid electrode is fabricated which has a composite microstructure in which particles of the reactant phase are finely dispersed within a solid, electronically conducting matrix in which the electroactive species is also mobile. There is thus a large internal reactant/mixed-conductor matrix interfacial area. The electroactive species is transported through the solid matrix to this interfacial region, where it undergoes the chemical part of the electrode reaction. Since the matrix material is also an electronic conductor, it can also act as the electrode s current collector. The electrochemical part of the reaction takes place on the outer surface of the composite electrode. [Pg.375]

Evidence concerning the identity of the mobile species can be obtained from observation [406,411—413] of the dispositions of product phases and phase boundaries relative to inert and immobile markers implanted at the plane of original contact between reactant surfaces. Movement of the markers themselves is known as the Kirkendall effect [414], Carter [415] has used pores in the material as markers. Product layer thickness has alternatively been determined by the decrease in intensity of the X-ray fluorescence from a suitable element which occurs in the underlying reactant but not in the intervening product layers [416]. [Pg.38]

Zero-order kinetic behaviour, in an unusual dehydration reaction [62], has been shown to be due to the constant area of reaction interface and this interface has been identified as original surfaces of the reactant crystallites which do not advance. Water molecules are mobile within the... [Pg.61]

The following assumptions are made (i) the activated complexes are in equilibrium with the reactants, (ii) the energy of a molecule is not altered when an activated complex is substituted for a nearest neighbour, and (iii) the products do not affect the course of reaction, except to define a boundary in surface processes. The various cases can be recognized from the magnitude of the pre-exponential term and calculated values [515] are summarized in Table 7. Low values of A indicate a tight surface complex whereas higher values are associated with a looser or mobile complex. [Pg.94]

Ni3C decomposition is included in this class on the basis of Doremieux s conclusion [669] that the slow step is the combination of carbon atoms on reactant surfaces. The reaction (543—613 K) obeyed first-order [eqn. (15)] kinetics. The rate was not significantly different in nitrogen and, unlike the hydrides and nitrides, the mobile lattice constituent was not volatilized but deposited as amorphous carbon. The mechanism suggested is that carbon diffuses from within the structure to a surface where combination occurs. When carbon concentration within the crystal has been decreased sufficiently, nuclei of nickel metal are formed and thereafter reaction proceeds through boundary displacement. [Pg.154]

Jacobs et al. [59,925,926] (Fig. 17). While this scheme conveniently summarizes many features of the observed behaviour, a number of variations or modifications of the mechanisms indicated have been proposed. Maycock and Pai Vemeker [924,933] emphasize the possible role of point defects and suggest, on the evidence of conductivity measurements, that the initial step may be the transfer of either a proton or an electron. Boldyrev et al. [46] suggest that proton conduction permits rapid migration of HC104 within the reactant and this undergoes preferential decomposition in distorted regions. More recently, the ease of proton transfer and the mobilities of other species in or on AP crystals have been investigated by a.c. [360] and d.c. [934] conductivity measurements. Owen et al. [934] could detect no surface proton conductivity and concluded that electron transfer was the initial step in decomposition. At the present time, these inconsistencies remain unresolved. [Pg.199]

Fig. 20. Schematic representation of the solid + solid reaction A + B -> AB in which constituents of the relatively mobile reactant (A) are transported to the outer surfaces of the product phase (AB) and rate is controlled by diffusion of constituents of A and/ or B across the barrier layer AB. Fig. 20. Schematic representation of the solid + solid reaction A + B -> AB in which constituents of the relatively mobile reactant (A) are transported to the outer surfaces of the product phase (AB) and rate is controlled by diffusion of constituents of A and/ or B across the barrier layer AB.
The maintenance of product formation, after loss of direct contact between reactants by the interposition of a layer of product, requires the mobility of at least one component and rates are often controlled by diffusion of one or more reactant across the barrier constituted by the product layer. Reaction rates of such processes are characteristically strongly deceleratory since nucleation is effectively instantaneous and the rate of product formation is determined by bulk diffusion from one interface to another across a product zone of progressively increasing thickness. Rate measurements can be simplified by preparation of the reactant in a controlled geometric shape, such as pressing together flat discs at a common planar surface that then constitutes the initial reaction interface. Control by diffusion in one dimension results in obedience to the... [Pg.286]

Equations (3.16) and (3.17) describe the dissociative adsorption and, recombination of oxygen on a donor D. The transfer between the donor D and acceptor A is described by eq. (3.18). The spillover oxygen (O) is a mobile species which is present on the acceptor surface without being associated with a particular surface site. The mobile spillover species can interact with a particular surface site B forming an active site C (eq. 3.19). Eq. (3.20) represents the deactivation of the active site C by interaction with a reactant E. [Pg.102]

There was therefore a clear need to assess the assumptions inherent in the classical kinetic approach for determining surface-catalysed reaction mechanisms where no account is taken of the individual behaviour of adsorbed reactants, substrate atoms, intermediates and their respective surface mobilities, all of which can contribute to the rate at which reactants reach active sites. The more usual classical approach is to assume thermodynamic equilibrium and that surface diffusion of reactants is fast and not rate determining. [Pg.51]

RuO2(110) exemplifies Langmuirian behaviour where the catalyst surface consists of equivalent sites statistically occupied by the reactants. This contrasts markedly with catalytic oxidation at metal surfaces, where oxygen transients, high surface mobility and island structures are dominant. The difference is in the main attributed to differences in surface diffusion barriers at metal and oxide surfaces. [Pg.89]

Here, we pointed to the problem of theoretical representation, in particular, in two aspects of theory (i) the existence of highly mobile atoms at the surface such as hydrogen, which are usually not considered in the atomistic models and (ii) the importance of bandgaps and relative energy levels of electronic states, which is often distorted in local density approximations. In both respects, a quick fix to the problem is not very likely. However, as both theory and experiment continue to be developed and applied in common research projects, it can be expected that the actual understanding of the processes involved in reaction on model catalysts will substantially improve over the next 10 years. After all, the ability to trace reactions and to account for the position and charge state of each reactant is already a realization of what seemed 20 years ago a fiction rather than fact. [Pg.115]


See other pages where Surface reactants mobility is mentioned: [Pg.104]    [Pg.151]    [Pg.168]    [Pg.305]    [Pg.369]    [Pg.223]    [Pg.119]    [Pg.398]    [Pg.418]    [Pg.72]    [Pg.350]    [Pg.8]    [Pg.9]    [Pg.15]    [Pg.96]    [Pg.214]    [Pg.255]    [Pg.267]    [Pg.276]    [Pg.285]    [Pg.61]    [Pg.127]    [Pg.133]    [Pg.133]    [Pg.101]    [Pg.199]    [Pg.202]    [Pg.209]    [Pg.212]    [Pg.216]    [Pg.237]    [Pg.257]   
See also in sourсe #XX -- [ Pg.26 ]

See also in sourсe #XX -- [ Pg.258 ]




SEARCH



Mobility surface

Reactant mobility

© 2024 chempedia.info