Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface diffusion rates, measurement

The use of an evanescent wave to excite fluorophores selectively near a solid-fluid interface is the basis of the technique total internal reflection fluorescence (TIRF). It can be used to study theadsorption kinetics of fluorophores onto a solid surface, and for the determination of orientational order and dynamics in adsorption layers and Langmuir-Blodgett films. TIRF microscopy (TIRFM) may be combined with FRAP ind FCS measurements to yield information about surface diffusion rates and the formation of surface aggregates. [Pg.374]

II. MEASUREMENT OF ADSORPTION/DESORPTION KINETICS AND SURFACE DIFFUSION RATES... [Pg.523]

For the investigation of adsorption/desorption kinetics and surface diffusion rates, SECM is employed to locally perturb adsorption/desorption equilibria and measure the resulting flux of adsorbate from a surface. In this application, the technique is termed scanning electrochemical induced desorption (SECMID) (1), but historically this represents the first use of SECM in an equilibrium perturbation mode of operation. Later developments of this mode are highlighted towards the end of Sec. II.C. The principles of SECMID are illustrated schematically in Figure 2, with specific reference to proton adsorption/desorption at a metal oxide/aqueous interface, although the technique should be applicable to any solid/liquid interface, provided that the adsorbate of interest can be detected amperometrically. [Pg.523]

A technique which has been used to measure surface diffusion rates is scanning Auger electron spectroscopy, which can follow adsorbate diffusion. A particular Auger transition of the adsorbate under investigation is used as a monitor of relative concentration versus distance scanned across the surface. Profiles are recorded after heating periods to observe the change in concentration profile as a function of time and temperature. [Pg.342]

Unwin PR, Bard AJ (1992) Scanning electrochemical microscopy. 14. Scanning electrochemical microscope induced desorption - a new technique for the measurement of adsorption desorption-kinetics and surface-diffusion rates at the solid liquid interface. J Phys Chem 96(12) 5035-5045... [Pg.1835]

At the catalyst-electrolyte surface we have gas-phase diffusion, and there can also be additional surface diffusion. In surface diffusion, gas molecules physically or chemically absorb onto a solid surface. If it is physical absorption, the species are highly mobUe. If it is chemisorption and the molecule is more strongly bonded to the specific site, species are not directly mobile but can move via a hopping mechanism. Surface diffusion rates can be measured by direct measurement of the flux of a nonreacting gas across the material surface. The difference between the measured diffusion and predicted Knudsen diffusion is calculated to be the surface diffusion component. Values of the surface diffusion coefficient (Ds) are 10 cm /s in solids and liquids, but these vary widely since surface interaction is involved. Also, Ds is a strong function of temperature and surface concentration. Surface diffusion adds to the overall diffusion but is typically less than one-half of the Knudsen component and so has been mostly neglected in fuel cell analysis. [Pg.233]

One procedure makes use of a box on whose silk screen bottom powdered desiccant has been placed, usually lithium chloride. The box is positioned 1-2 mm above the surface, and the rate of gain in weight is measured for the film-free and the film-covered surface. The rate of water uptake is reported as u = m/fA, or in g/sec cm. This is taken to be proportional to - Cd)/R, where Ch, and Cd are the concentrations of water vapor in equilibrium with water and with the desiccant, respectively, and R is the diffusional resistance across the gap between the surface and the screen. Qualitatively, R can be regarded as actually being the sum of a series of resistances corresponding to the various diffusion gradients present ... [Pg.146]

Mobility of this second kind is illustrated in Fig. XVIII-14, which shows NO molecules diffusing around on terraces with intervals of being trapped at steps. Surface diffusion can be seen in field emission microscopy (FEM) and can be measured by observing the growth rate of patches or fluctuations in emission from a small area [136,138] (see Section V111-2C), field ion microscopy [138], Auger and work function measurements, and laser-induced desorption... [Pg.709]

The spreading rate of a polymer droplet on a surface has been measured (363,364). The diffusion constant was at least an order of magnitude smaller than that of the bulk. The monomer—surface friction coefficient for polystyrene has been measured on a number of surfaces and excellent... [Pg.545]

Because of the close similarity in shape of the profiles shown in Fig. 16-27 (as well as likely variations in parameters e.g., concentration-dependent surface diffusion coefficient), a contrdling mechanism cannot be rehably determined from transition shape. If rehable correlations are not available and rate parameters cannot be measured in independent experiments, then particle diameters, velocities, and other factors should be varied ana the obsei ved impacl considered in relation to the definitions of the numbers of transfer units. [Pg.1527]

Tenet (v). Experimental studies of the interaction of a solid with a gas, liquid or solute must ensure that there is uniform availability of the homogeneous participant at all surfaces within an assemblage of reactant crystallites if meaningful kinetic measurements relating to the chemical step are to be obtained. If this is not achieved, then diffusion rates will control the overall rate of product formation. Such effects may be particularly significant in studies concerned with finely divided solids. [Pg.7]

Sections 2.1—2.3 give accounts of kinetic and mechanistic features of the three rate-limiting processes (i) diffusion at a surface or in a gas (including the nucleation step), (ii) reaction at an interface, and (iii) diffusion across a barrier phase, [(ii) and (iii) are growth processes.] In any particular reaction, the slowest of these processes will, at any particular instant, control the rate of product formation. (A kinetic analysis of rate measurements must also incorporate an allowance for the geometric factors.)... [Pg.253]

The maintenance of product formation, after loss of direct contact between reactants by the interposition of a layer of product, requires the mobility of at least one component and rates are often controlled by diffusion of one or more reactant across the barrier constituted by the product layer. Reaction rates of such processes are characteristically strongly deceleratory since nucleation is effectively instantaneous and the rate of product formation is determined by bulk diffusion from one interface to another across a product zone of progressively increasing thickness. Rate measurements can be simplified by preparation of the reactant in a controlled geometric shape, such as pressing together flat discs at a common planar surface that then constitutes the initial reaction interface. Control by diffusion in one dimension results in obedience to the... [Pg.286]

Diffusion through a product layer can be treated like a film resistance. The surface concentration is measured inside the ash layer at the unbumed surface of the particle. If the ash thickness is constant and as 0, then the rate has the form of Equation (11.48). The ash thickness will probably increase with time, and this will cause the rate constant applicable to a single particle to gradually decline with time. [Pg.420]

If diffusion of reactants to the active sites in pores is slower than the chemical reaction, internal mass transfer is at least partly limiting and the reactant concentration decreases along the pores. This reduces the reaction rate compared to the rate at external surface conditions. A measure of the reaction rate decrease is the effectiveness factor, r, which has been defined as ... [Pg.286]


See other pages where Surface diffusion rates, measurement is mentioned: [Pg.241]    [Pg.61]    [Pg.314]    [Pg.72]    [Pg.539]    [Pg.461]    [Pg.461]    [Pg.49]    [Pg.522]    [Pg.371]    [Pg.464]    [Pg.391]    [Pg.412]    [Pg.75]    [Pg.354]    [Pg.948]    [Pg.441]    [Pg.149]    [Pg.180]    [Pg.70]    [Pg.436]    [Pg.36]    [Pg.146]    [Pg.180]    [Pg.289]    [Pg.241]    [Pg.122]    [Pg.8]   
See also in sourсe #XX -- [ Pg.523 , Pg.524 , Pg.525 , Pg.526 , Pg.527 , Pg.528 , Pg.529 , Pg.530 , Pg.531 , Pg.532 , Pg.533 , Pg.534 , Pg.535 ]




SEARCH



Diffuse surface

Diffusion measurements

Diffusion rate

Diffusivity measurement

Measurement surface

Measuring diffusivities

Measuring rate

Rate measurement

Surface diffusion

Surface diffusion Diffusivity

Surface diffusion measurement

Surface diffusion rates, measurement applications

Surface diffusion rates, measurement principles

Surface diffusion rates, measurement theory

Surface diffusivity

Surface rate

© 2024 chempedia.info