Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface characterization, spectroscopic

Most of the published promotional kinetic studies have been performed on well defined (single crystal) surfaces. In many cases atmospheric or higher pressure reactors have been combined with a separate UHV analysis chamber for promoter dosing on the catalyst surface and for application of surface sensitive spectroscopic techniques (XPS, UPS, SIMS, STM etc.) for catalyst characterization. This attempts to bridge the pressure gap between UHV and real operating conditions. [Pg.73]

Adsorbed CO layers, bonding and Interactions, 559-61 Adsorbed molecules, vibrational analysis, 392-V03 Adsorbed species and processes on surfaces, IR spectroscopic characterizations, VOV-19 Adsorption... [Pg.597]

While in situ techniques encompass all characterization/spectroscopic methods that can be used to probe the surface chemistry of an operating practical catalyst, its entirety is too large to cover in any real detail. Therefore the methods covered in this review were chosen based on their prevalence and use in the field and the potential for significant observations during reaction cycles. Some methods, such as ATR, TAP and catalytic shock tube, were chosen based on the potential of these methods and the likelihood that they will become more widely used as they are integrated with evolving spectroscopic techniques. [Pg.191]

Similarly, several works can be cited on cationic SIP on flat substrates. Again, the advantage of cationic SIP is that it puts at one s disposal surface-sensitive spectroscopic methods that allow successful in situ characterization of polymer brushes on surfaces ... [Pg.129]

In the next sections we introduce some of the most important experimental techniques of surface characterization. For the interested reader, a broad range of books on this topic is available (e.g. Refs. [346,347]). We start by discussing microscopy, continue with diffraction, and finally focus on spectroscopic methods. [Pg.162]

In any gas/solid catalytic system, the reactant must first be adsorbed on the catalyst surface. This is why surface characterization is so important. Studying the adsorption of various molecules under controlled conditions yields information regarding the catalyst surface area, pore volume, and pore size distribution [80]. The key factor here is accessibility. Sophisticated spectroscopic analysis of single-crystal models can tell us a lot about what goes on at the active site, but the molecules must get there first. [Pg.146]

Table I. Spectroscopic Techniques Used For Surface Characterization... Table I. Spectroscopic Techniques Used For Surface Characterization...
Another technologically important reaction is the Fischer-Tropsch synthesis, with iron oxide being one of the components of some catalysts. A detailed understanding of the complex mechanism of this reaction can be obtained by studying the chemisorption of simple molecules on well-characterized surfaces by means of advanced surface-sensitive spectroscopic techniques. A few investigations of the interaction of small molecules (such as CO, CO2, H2O, O2, H2, and NO) (520-522) and organic molecules on iron oxide surfaces (523-527) have been carried out. [Pg.351]

The structure and reactivity of ethylene chemisorbed on transition-metal surfaces are of fimdamental importance in surface science and heterogeneous catalysis. HREELS has been foremost among the surface characterization techniques employed in fact, the first vibrational spectroscopic study of ethylene chemisorbed on Pt(lll) was carried out with electron energy-loss spectroscopy (EELS) almost a decade before IRAS was employed. ... [Pg.6056]

A number of modern physical techniques are used to characterize heterogeneous catalysts. These methods range from techniques probing the interaction of catalysts with probe molecules, to in situ surface characterization techniques as well as structural elucidation under both in situ and ex situ conditions. In general, interaction of catalysts with probe molecules is followed using some spectroscopic property of the probe molecule itself and/or the changes induced by the heterogeneous catalyst. The spectroscopic techniques used include vibrational spectroscopies, NMR spectroscopy, UV-Vis spectroscopy and mass spectrometry to name a few examples. Similarly, in situ techniques tend to use properties of probe molecules but also combined with structural techniques such as X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). In recent years XAS has been widely used in the characterization of catalysts and catalyst surfaces. [Pg.299]

It is not surprising therefore that the optical properties of small metal particles have received a considerable interest worldwide. Their large range of applications goes from surface sensitive spectroscopic analysis to catalysis and even photonics with microwave polarizers [9-15]. These developments have sparked a renewed interest in the optical characterization of metallic particle suspensions, often routinely carried out by transmission electron microscopy (TEM) and UV-visible photo-absorption spectroscopy. The recent observation of large SP enhancements of the non linear optical response from these particles, initially for third order processes and more recently for second order processes has also initiated a particular attention for non linear optical phenomena [16-18]. Furthermore, the paradox that second order processes should vanish at first order for perfectly spherical particles whereas experimentally large intensities were collected for supposedly near-spherical particle suspensions had to be resolved. It is the purpose of tire present review to describe the current picture on the problem. [Pg.646]

The only donor characterized spectroscopically in 3C-SiC is nitrogen on a C site (Nc) [170]. The CB minimum of 3C-SiC is located at the X point of the surface of the BZ so that it is only threefold degenerate, compared to sixfold... [Pg.193]

Understanding of the structure of the adsorbed surfactant and polymer layers at a molecular level is helpful for improving various interfacial processes by manipulating the adsorbed layers for optimum configurational characteristics. Until recently, methods of surface characterization were limited to the measurement of macroscopic properties like adsorption density, zeta-potential and wettability. Such studies, while being helpful to provide an insight into the mechanisms, could not yield any direct information on the nanoscopic characteristics of the adsorbed species. Recently, a number of spectroscopic techniques such as fluorescence, electron spin resonance, infrared and Raman have been successfully applied to probe the microstructure of the adsorbed layers of surfactants and polymers at mineral-solution interfaces. [Pg.88]

Investigations of the acidity of specific surface sites may be accomplished by studies coordinated with spectroscopic methods, such as infrared (JR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, or mass spectrometry (MS). Surface characterization with Fourier transform infrared (FTIR) spectroscopy can provide quantitative results with experimental methods that are easily performed. However, the transmission sampling techniques traditionally employed for infrared studies may introduce experimental artifacts on the analyzed surface (10,... [Pg.255]

The yariation in catalytic function with increasing oxygen coyerage is in excellent agreement with surface characterization by molybdenum core leyel shifts and surface polarizability measurements. Clearly the physical measurements were performed on the actual catalytically actiye sites, and the nature of the actiye sites has been established. The catalytic results combined with the spectroscopic data also serve to calibrate the minimum molybdenum oxidation state required for acid catalyzed C-C bond breaking and formation of a secondary carbenium ion, namely. Mo(IV). [Pg.249]

Due to the surface sensitivity surface enhanced fluorescence has become particularly popular in the characterisation of thin molecular films, such as Langmuir-Blodgett films and self-assembled biomembranes. Two surface enhanced spectroscopic techniques (surface enhanced IR absorption, SEIRA, and surface enhanced fluorescence, SEF) were recently applied to the study of biomembrane systems by the group of Reiner Salzer [323]. With SEIRA, specific fingerprints of biomolecules could be obtained with a tenfold IR intensity enhancement With SEF signal enhancement factors greater than 100 were obtained. The enhancement factor was very dependent on the properties and structure of the metal clusters used. With the two techniques biomembranes formed from vesicles with embedded nicotinic acetylchoHne receptors were spectroscopically characterized. [Pg.689]

This chapter summarizes the principles of some of the many spectroscopic techniques that are available for the analysis or study of aspects of adhesive bonding science and technology. As indicated in Table 1, there are dozens of techniques and new acronyms appear almost on a daily basis. The number of instrumental spectroscopies available today to the scientist is bewildering, especially the many techniques for surface characterization. Therefore, it is likely that some techniques have been missed, although it was attempted to cover them all, at least in Table 1. The choice of techniques from that listing that were actually discussed in this chapter had to be limited and was in some cases somewhat arbitrary and subjective. However, some emphasis was put on techniques that can be used in the study of the science of adhesive bonding technology. Techniques for routine analysis, e.g., NMR or the various mass spectrometries, were not discussed in depth. [Pg.423]

Surface characterization by spectroscopic techniques yields information on the functional groups and elemental composition on the surface of polymeric biomaterials. The most common spectroscopic tools used for biomedical polymers are X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS), and Fourier transform infrared spectroscopy (FTIR) (diffuse reflectance and attenuated total internal reflectance modes). Each of these techniques is discussed in the succeeding text. [Pg.40]

Characterization of ionic Liquid Surfaces by Spectroscopic Techniques... [Pg.146]


See other pages where Surface characterization, spectroscopic is mentioned: [Pg.238]    [Pg.402]    [Pg.3]    [Pg.287]    [Pg.17]    [Pg.118]    [Pg.133]    [Pg.134]    [Pg.202]    [Pg.343]    [Pg.109]    [Pg.165]    [Pg.198]    [Pg.238]    [Pg.165]    [Pg.589]    [Pg.162]    [Pg.267]    [Pg.305]    [Pg.109]   


SEARCH



In Spectroscopic Characterization of Minerals and Their Surfaces Coyne

In Spectroscopic Characterization of Minerals and Their Surfaces Coyne ACS Symposium Series American Chemical Society: Washington

Spectroscopic characterization

Spectroscopic methods, characterization silica surface

Surface acid sites, characterization spectroscopic methods

Surface characterization spectroscopic methods

Surface characterization, spectroscopic techniques

Surface chemistry spectroscopic characterization

© 2024 chempedia.info