Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Large experimental

The third virial coefficient C(7) depends upon tliree-body interactions, both additive and non-additive. The relationship is well understood [106. 107. 111]. If the pair potential is known precisely, then C(7) ought to serve as a good probe of the non-additive, tliree-body interaction energy. The importance of the non-additive contribution has been confimied by C(7) measurements. Unfortunately, large experimental uncertainties in C (7) have precluded unequivocal tests of details of the non-additive, tliree-body interaction. [Pg.202]

The electro deposition of tungsten aUoys of iron, nickel, and cobalt is commercially feasible but has remained largely experimental. The properties of these aUoys should, however, be of sufficient interest for engineering appHcations. [Pg.41]

The use of supercritical and hot water as a solvent is still largely experimental. Because supercritical technology is well known in the power industry, this use of water is likely to increase in the future. Corrosion control may be an important limiting consideration. General process economics are the second potential limit (see SUPERCRITICAL FLUIDS). [Pg.370]

Can the relationship be approximated by an equation involving linear terms for the quantitative independent variables and two-factor interaction terms only or is a more complex model, involving quadratic and perhaps even multifactor interaction terms, necessary As indicated, a more sophisticated statistical model may be required to describe relationships adequately over a relatively large experimental range than over a limited range. A linear relationship may thus be appropriate over a narrow range, but not over a wide one. The more complex the assumed model, the more mns are usually required to estimate model terms. [Pg.522]

In 1972 in Moscow, a large experimental facility, the U-25, used a 250 MW natural gas combustor and generated 20 MW. The Soviets have been using very successfully mobile, pulsed MHD generators throughout the Soviet Union, for seismic studies. [Pg.746]

In hydroxylation, quinones are usually obtained since the initial hydroxyl product is further oxidised. Kinetic studies on the hydroxylation of 1,3,5-tri-methoxybenzene with perbenzoic acid gave second-order rate coefficients (Table 29) which remained fairly constant for a wide variation in concentration of aromatic and acid thus indicating that the rate-determining step is bimolecular133. The variation was considered to be within the rather large experimental error for the reaction which was very fast and, therefore, studied at low temperature (—12.4 °C). Since more than one mole of acid per mole of aromatic was eventually consumed, the mechanism was formulated as... [Pg.54]

Typical adsorption isotherms are shown in Figs. 16 and 17. Despite the large experimental scatter, a steep increase in adsorption can be seen at low concentrations, followed by a plateau at concentrations exceeding the CMC. Similar behavior has been observed before with model surfactants [49-54] and has also been predicted by modem theories of adsorption [54]. According to Fig. 16, adsorption increases modestly with salinity provided that the calcium ion concentration remains low. The calcium influence, shown in Fig. 17, cannot be explained by ionic strength effects alone but may be due to calcium-kaolinite interactions. [Pg.405]

Several doubts about the correctness of the usual statistical treatment were expressed already in the older literature (31), and later, attention was called to large experimental errors (142) in AH and AS and their mutual dependence (143-145). The possibility of an apparent correlation due only to experimental error also was recognized and discussed (1, 2, 4, 6, 115, 116, 119, 146). However, the full danger of an improper statistical treatment was shown only by this reviewer (147) and by Petersen (148). The first correct statistical treatment of a special case followed (149) and provoked a brisk discussion in which Malawski (150, 151), Leffler (152, 153), Palm (3, 154, 155) and others (156-161) took part. Recently, the necessary formulas for a statistical treatment in common cases have been derived (162-164). The heart of the problem lies not in experimental errors, but in the a priori dependence of the correlated quantities, AH and AS. It is to be stressed in advance that in most cases, the correct statistical treatment has not invalidated the existence of an approximate isokinetic relationship however, the slopes and especially the correlation coefficients reported previously are almost always wrong. [Pg.419]

The sol fractions occurring in a series of cross-linked Tutyl rubber copolymers consisting of a small proportion of isoprene with isobutylene units have been found to vary with y in accordance with Eq. (50). The unfortunately large experimental inaccuracy precluded a precise test, however. [Pg.378]

Four major areas of electrochemistry related to medical diagnostics have been reviewed. Blood pH and gas measurements as well as ISE s represent relatively mature areas which enjoy widespread commercialization. New approaches should yield devices which have superior performance and which are less expensive to produce. Enzyme electrodes and electrochemical immunoassay arc still largely experimental, but the intense level of current research effort coupled with some interesting recent developments should lead to commercial success over the next decade. [Pg.50]

As a key first step towards oral absorption, considerable effort has been directed towards the development of computational solubility prediction [26-30]. However, partly due to a lack of large experimental datasets measured under identical conditions, today s methods are not sufficiently robust for reliable predictions [31]. Nonetheless, further fine-tuning of these models can be expected since high-throughput data have become available for their construction. [Pg.7]

Finally, one of the main limitations of this model is the large false-positive rate and large experimental errors. Indeed, the primary limitation of the QSAR and in silico models is the high false-positive rates in oral bioavailability predictions. [Pg.453]

Most energetic contributions are, as we have discussed, difficult to predict and large experimental efforts have for that reason been devoted to derive systematic trends in the energetics of classes of materials. In this chapter we will try to convey an overview of periodic trends in the thermodynamic properties of inorganic compounds and we will also present selected examples illustrating some of the more usual rationalization schemes. Finally, trends in enthalpy of mixing are treated. Also here we aim to look at trends and rationalization schemes. The chapter is by no means exhaustive - only selected classes of compounds and selected rationalization schemes are discussed. [Pg.199]

Another philosophical issue centers on whether a method should be a protocol specified down to the last detail (i.e. be truly black-box ), or whether it should merely outline a general approach with minor details to be decided on a case-by-case basis. Obviously a method where empirical parameterization is kept to the absolute minimum or is absent altogether will offer more degrees of freedom in this regard than the one where a minor change in the protocol would, for consistency, require reparameterization against a large experimental data set. Yet... [Pg.32]

The many laboratories involved in this work allowed a large experimental program to be set up to test the behavior of these soft donor extractants in countercurrent separations. The trivalent actinide-lanthanide separation process was named SANEX and four chemical systems have been explored (Fig. 12.20) ... [Pg.549]

Thus, the available evidence indicates that little or no adsorption of hydroquinone by silver occurs. Rabinovich s data are unacceptable because of the large experimental errors involved. The possible amount of adsorption indicated by the data of Perry, Ballard, and Sheppard does not exceed the limits of error in their analytical determination of hydroquinone and could not under any circumstances cover more than a small fraction of the silver surface. The kinetics of the reaction between hydroquinone and silver ions do not indicate adsorption of the reducing agent, although the first-order dependence of rate on concentration is not incompatible with weak adsorption. It seems unlikely, accordingly, that adsorption of hydroquinone by silver plays a role of any consequence in the silver catalysis of the reaction between hydroquinone and silver ion. [Pg.114]

D had a large experimental uncertainty, but is nevertheless close to the later result of 4.16 0.4 D (Kulakowska et al. 1974), obtained from capacitance measurements of a solution in dioxane. The diffraction method has the advantage that it gives not only the magnitude but also the direction of the dipole moment. Gas-phase microwave measurements are also capable of providing all three components of the dipole moment, but only the magnitude is obtained from dielectric solution measurements. [Pg.142]


See other pages where Large experimental is mentioned: [Pg.2748]    [Pg.230]    [Pg.376]    [Pg.397]    [Pg.94]    [Pg.295]    [Pg.36]    [Pg.45]    [Pg.484]    [Pg.266]    [Pg.36]    [Pg.45]    [Pg.427]    [Pg.582]    [Pg.1]    [Pg.406]    [Pg.521]    [Pg.206]    [Pg.418]    [Pg.77]    [Pg.473]    [Pg.179]    [Pg.163]    [Pg.107]    [Pg.173]    [Pg.37]    [Pg.171]    [Pg.31]    [Pg.36]    [Pg.287]    [Pg.679]    [Pg.415]    [Pg.77]    [Pg.286]   
See also in sourсe #XX -- [ Pg.253 ]




SEARCH



© 2024 chempedia.info