Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur process for

Kasahara, Seiji, et al. (2007), Flowsheet Study of the Thermochemical Water-splitting Iodine-Sulfur Process for Effective Hydrogen Production , International Journal of Hydrogen Energy, 32, pp. 489-496. [Pg.406]

Sato, S., Shimizu, S., Nakajima, N., and Ikezoe, Y., A Nickel-Iodine-Sulfur Process for Hydrogen Production, Int. J. Hydrogen Energy, 8(1), 15-22,1983. [Pg.45]

Isotope heterogeneity is not, however, always the product of biological sulfur processing. For example, values for sulfides from mantle-derived peridotites and... [Pg.631]

SHIMIZU, S., NAKAJIMA, H., ONUKI, K., A Progress Report on Bench Scale Studies of the Iodine-Sulfur Process for Thermochemical Hydrogen Production, (TCM, Oarai, 1992), High Temperature Applications of Nuclear Energy, Report IAEA-TECDOC-761, International Atomic Energy Agency, Vienna (1994) 114-119. [Pg.98]

None of these rubbers has carbon-carbon double bonds. Consequently, they have relatively good aging properties, but, on the other hand, they cannot be vulcanized by the classical sulfur process. For this reason, some of these rubbers are cross-linked with the aid of peroxides, and, in this case, by polymerization of vinyl groups in the case of some silicone rubbers or by free radical transfer reactions in the case of ethylene/vinyl acetate or acrylic rubbers. Other speciality elastomers are cross-linked by reaction with diamines, for example, in the cases of acrylic, epichlorohydrin and fluorine rubbers. [Pg.737]

In the finely divided state platinum is an excellent catalyst, having long been used in the contact process for producing sulfuric acid. It is also used as a catalyst in cracking petroleum products. Much interest exists in using platinum as a catalyst in fuel cells and in antipollution devices for automobiles. [Pg.137]

The amide group is readily hydrolyzed to acrylic acid, and this reaction is kinetically faster in base than in acid solutions (5,32,33). However, hydrolysis of N-alkyl derivatives proceeds at slower rates. The presence of an electron-with-drawing group on nitrogen not only facilitates hydrolysis but also affects the polymerization behavior of these derivatives (34,35). With concentrated sulfuric acid, acrylamide forms acrylamide sulfate salt, the intermediate of the former sulfuric acid process for producing acrylamide commercially. Further reaction of the salt with alcohols produces acrylate esters (5). In strongly alkaline anhydrous solutions a potassium salt can be formed by reaction with potassium / /-butoxide in tert-huty alcohol at room temperature (36). [Pg.134]

Production Technology. Processes for extraction of P2O3 from phosphate rock by sulfuric acid vary widely, but all produce a phosphoric acid—calcium sulfate slurry that requires soHds-Hquid separation (usually by filtration (qv)), countercurrent washing of the soHds to improve P2O3 recovery, and concentration of the acid. Volatilized fluorine compounds are scmbbed and calcium sulfate is disposed of in a variety of ways. [Pg.225]

Triple (Concentrated) Superphosphate. The first important use of phosphoric acid in fertilizer processing was in the production of triple superphosphate (TSP), sometimes called concentrated superphosphate. Basically, the production process for this material is the same as that for normal superphosphate, except that the reactants are phosphate rock and phosphoric acid instead of phosphate rock and sulfuric acid. The phosphoric acid, like sulfuric acid, solubilizes the rock and, in addition, contributes its own content of soluble phosphoms. The result is triple superphosphate of 45—47% P2 s content as compared to 16—20% P2 5 normal superphosphate. Although triple superphosphate has been known almost as long as normal superphosphate, it did not reach commercial importance until the late 1940s, when commercial supply of acid became available. [Pg.226]

Processes for Triacetate. There are both batch and continuous process for triacetate. Many of the considerations and support faciUties for producing acetate apply to triacetate however, no acetyl hydrolysis is required. In the batch triacetate sulfuric acid process, however, a sulfate hydrolysis step (or desulfonation) is necessary. This is carried out by slow addition of a dilute aqueous acetic acid solution containing sodium or magnesium acetate (44,45) or triethanolamine (46) to neutrali2e the Hberated sulfuric acid. The cellulose triacetate product has a combined acetic acid content of 61.5%. [Pg.296]

The reaction of formate salts with mineral acids such as sulfuric acid is the oldest iadustrial process for the production of formic acid, and it stiU has importance ia the 1990s. Sodium formate [141-53-7] and calcium formate [544-17-2] are available iadustriaHy from the production of pentaerythritol and other polyhydric alcohols and of disodium dithionite (23). The acidolysis is technically straightforward, but the unavoidable production of sodium sulfate is a clear disadvantage of this route. [Pg.504]

The carbonylation of methanol [67-56-1] to methyl formate ia the presence of basic catalysts has been practiced iadustriaHy for many years. Ia older processes for formic acid utili2ing this reactioa, the methyl formate [107-31-3] reacts with ammonia to give formamide [75-12-7] which is hydroly2ed to formic acid ia the preseace of sulfuric acid ... [Pg.504]

Another use is in various extraction and absorption processes for the purification of acetylene or butadiene and for separation of aHphatic hydrocarbons, which have limited solubiHty in DMF, from aromatic hydrocarbons. DMF has also been used to recover CO2 from flue gases. Because of the high solubiHty of SO2 iu DMF, this method can even be used for exhaust streams from processes using high sulfur fuels. The CO2 is not contaminated with sulfur-containing impurities, which are recovered from the DMF in a separate step (29). [Pg.514]

Organic hydroperoxides can be prepared by Hquid-phase oxidation of selected hydrocarbons in relatively high yield. Several cycHc processes for hydrogen peroxide manufacture from hydroperoxides have been patented (84,85), and others (86—88) describe the reaction of tert-huty hydroperoxide with sulfuric acid to obtain hydrogen peroxide and coproduct tert-huty alcohol or tert-huty peroxide. [Pg.477]

The electrolytic processes for commercial production of hydrogen peroxide are based on (/) the oxidation of sulfuric acid or sulfates to peroxydisulfuric acid [13445-49-3] (peroxydisulfates) with the formation of hydrogen and (2) the double hydrolysis of the peroxydisulfuric acid (peroxydisulfates) to Caro s acid and then hydrogen peroxide. To avoid electrolysis of water, smooth platinum electrodes are used because of the high oxygen overvoltage. The overall reaction is... [Pg.477]

Battery breaking technologies use wet classification to separate the components of cmshed batteries. Before cmshing, the sulfuric acid is drained from the batteries. The sulfuric acid is collected and stored for use at a later stage in the process, or it may be upgraded by a solvent extraction process for reuse in battery acid. [Pg.49]

The products of reaction are pumped to a filter press for separation into a sodium sulfate solution and a filter cake having a low moisture content. The filter cake is then ready to be processed for the recovery of lead. The filtrate from the process contains an excess of sodium carbonate, and can be neutralized using the sulfuric acid drained from the batteries. [Pg.49]

Thermo dynamic data for nitric acid are given ia Table 2. Properties for the ternary systems sulfuric acid—nitric acid—water (5,14) and magnesium nitrate—nitric acid—water (11,15—17) used ia processes for concentrating nitric acid are available. [Pg.39]

The composition of a reforming catalyst is dictated by the composition of the feedstock and the desired reformate. The catalysts used are principally platinum or platinum—rhenium on an alumina base. The purpose of platinum on the catalyst is to promote dehydrogenation and hydrogenation reactions. Nonplatinum catalysts are used in regenerative processes for feedstocks containing sulfur, although pretreatment (hydrodesulfurization) may permit platinum catalysts to be employed. [Pg.207]

Sulfur, another inorganic petrochemical, is obtained by the oxidation of hydrogen sulfide 2H2S + O2 — 2H2 0 + 2S. Hydrogen sulfide is a constituent of natural gas and also of the majority of refinery gas streams, especially those off-gases from hydrodesulfurization processes. A majority of the sulfur is converted to sulfuric acid for the manufacture of fertilizers and other chemicals. Other uses for sulfur include the production of carbon disulfide, refined sulfur, and pulp and paper industry chemicals. [Pg.216]

The reaction is completed after 6—8 h at 95°C volatiles, water, and some free phenol are removed by vacuum stripping up to 140—170°C. For resins requiring phenol in only trace amounts, such as epoxy hardeners, steam distillation or steam stripping may be used. Both water and free phenol affect the cure and final resin properties, which are monitored in routine quaHty control testing by gc. OxaHc acid (1—2 parts per 100 parts phenol) does not require neutralization because it decomposes to CO, CO2, and water furthermore, it produces milder reactions and low color. Sulfuric and sulfonic acids are strong catalysts and require neutralization with lime 0.1 parts of sulfuric acid per 100 parts of phenol are used. A continuous process for novolak resin production has been described (31,32). An alternative process for making novolaks without acid catalysis has also been reported (33), which uses a... [Pg.297]

Equation 1 is an oversimplification of the actual process. The polymerizable sulfur source for the PPS polymerization consists of a dehydrated product of A/-meth5i-2-pyrrohdinone [872-50-4] (NMP) and aqueous sodium sulfide feedstocks. During the course of this dehydration, one equivalent of NMP is hydrolyzed to form sodium A/-methyl-4-aminobutanoate (SMAB) (eq. 3). [Pg.442]

The Eastman Chemical Company has pubHshed extensively in the patent Hterature (65—74) and the scientific Hterature (75—77) on processes for making poly(phenylene sulfide)- (9-(phenylene disulfide), and related copolymers. The Eastman process involves the reaction of elemental sulfur with Ndiiodobenzene to yield a phenylene sulfide polymer that also contains phenylene disulfide repeating units in the polymer. The fraction of repeating groups containing... [Pg.444]


See other pages where Sulfur process for is mentioned: [Pg.23]    [Pg.23]    [Pg.24]    [Pg.24]    [Pg.61]    [Pg.197]    [Pg.273]    [Pg.604]    [Pg.5]    [Pg.23]    [Pg.23]    [Pg.24]    [Pg.24]    [Pg.61]    [Pg.197]    [Pg.273]    [Pg.604]    [Pg.5]    [Pg.91]    [Pg.281]    [Pg.389]    [Pg.231]    [Pg.199]    [Pg.80]    [Pg.172]    [Pg.437]    [Pg.526]    [Pg.23]    [Pg.496]    [Pg.251]    [Pg.449]    [Pg.64]    [Pg.103]    [Pg.119]    [Pg.7]    [Pg.24]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



Contact process, for sulfuric acid

Oxalic-Sulfuric Acid Process for Maximum Heat Resistance

© 2024 chempedia.info