Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur oxidation products

Treatment of ethyl 2,7-di-/ert-butylthiepin-4-carboxylate (24) with 3-chloroperoxybenzoic acid at — 78 °C results in the benzene derivative 25 only, and no sulfur-oxidized products 80 however, the stable 2,7-di-ter/-butylthiepin (26) can be oxidized with 0-benzyl 00-hydrogen monoper-oxycarbonate at — 78 °C to give the corresponding S-oxide 27, which was monitored by HNMR spectroscopy at — 40°C. At —15 C, sulfoxide 27 was converted, via extrusion of sulfur monoxide, with a half-life of 5.5 hours to the benzene derivative 28.87 The oxidation reaction of 26 with excess of the monoperoxycarbonate did not proceed to the S,S-dioxide, even though the parent thiepin 1,1-dioxide is known to be stable at room temperature.15... [Pg.91]

The lifetime of sulfur monoxide is short and it disappears from the system within a few milliseconds. Its mode of decay is not well understood. Callear reports that the rate of SO removal is independent of oxygen pressure. Wright, in turn, found that at low O2 pressures the final sulfur oxide product is S2O, while at high O2 levels SO2 i.s formed. The following steps have been considered for SO removal ... [Pg.191]

All the oxidants discussed above [X2, H202,02, Mn02, Fe(III) minerals] react with sulfide to form polysulfides as the first sulfur oxidation product. These, in turn, are able to react further depending on conditions to form SH, thiosulfate, sulfite, and sulfate. Sulfite is typically a minor component in all sulfide oxidation reactions probably because of its high reactivity with oxidants and its reaction... [Pg.186]

Detergents are metal salts of organic acids used primarily in crankcase lubricants. Alkylbenzenesulfonic acids, alkylphenols, sulfur- and methjiene-coupled alkyl phenols, carboxyUc acids, and alkylphosphonic acids are commonly used as their calcium, sodium, and magnesium salts. Calcium sulfonates, overbased with excess calcium hydroxide or calcium carbonate to neutralize acidic combustion and oxidation products, constitute 65% of the total detergent market. These are followed by calcium phenates at 31% (22). [Pg.242]

Another method of manufacture involves the oxidation of 2-isopropylnaphthalene ia the presence of a few percent of 2-isopropylnaphthalene hydroperoxide/i)ti< 2-22-(y as the initiator, some alkaU, and perhaps a transition-metal catalyst, with oxygen or air at ca 90—100°C, to ca 20—40% conversion to the hydroperoxide the oxidation product is cleaved, using a small amount of ca 50 wt % sulfuric acid as the catalyst at ca 60°C to give 2-naphthalenol and acetone in high yield (70). The yields of both 2-naphthalenol and acetone from the hydroperoxide are 90% or better. [Pg.498]

The anhydride can be made by the Hquid-phase oxidation of acenaphthene [83-32-9] with chromic acid in aqueous sulfuric acid or acetic acid (93). A postoxidation of the cmde oxidation product with hydrogen peroxide or an alkaU hypochlorite is advantageous (94). An alternative Hquid-phase oxidation process involves the reaction of acenaphthene, molten or in alkanoic acid solvent, with oxygen or acid at ca 70—200°C in the presence of Mn resinate or stearate or Co or Mn salts and a bromide. Addition of an aHphatic anhydride accelerates the oxidation (95). [Pg.503]

HydrometaHurgical Processes. The hydrometaHurgical treatments of oxide ores involve leaching with ammonia or with sulfuric acid. In the ammoniacal leaching process, the nickel oxide component of the ore first is reduced selectively. Then the ore is leached with ammonia which removes the nickel into solution, from which it is precipitated as nickel carbonate by heating. A nickel oxide product used in making steel is produced by roasting the carbonate. [Pg.3]

The significance of the total sulfur content of kerosene varies greatly with the type of oil and the use to which it is put. Sulfur content is of great importance when the kerosene to be burned produces sulfur oxides, which are of environmental concern. The color of kerosene is of Htde significance but a product darker than usual may have resulted from contamination or aging in fact, a color darker than specified may be considered by some users as unsatisfactory. Kerosene, because of its use as a burning oil, must be free of aromatic and unsaturated hydrocarbons the desirable constituents of kerosene are saturated hydrocarbons. [Pg.211]

The flash point of PPS, as measured by ASTM D1929, is greater than 500°C. Combustion products of PPS include carbon, sulfur oxides, and carbonyl sulfide. Specific hazards are defined by the OSHA Hazard Communication Standard (158). Based on information in 1995, PPS does not meet any of the hazard definitions of this standard. [Pg.451]

Thermal decomposition of spent acids, eg, sulfuric acid, is required as an intermediate step at temperatures sufficientiy high to completely consume the organic contaminants by combustion temperatures above 1000°C are required. Concentrated acid can be made from the sulfur oxides. Spent acid is sprayed into a vertical combustion chamber, where the energy required to heat and vaporize the feed and support these endothermic reactions is suppHed by complete combustion of fuel oil plus added sulfur, if further acid production is desired. High feed rates of up to 30 t/d of uniform spent acid droplets are attained with a single rotary atomizer and decomposition rates of ca 400 t/d are possible (98). [Pg.525]

Health nd SMety Factors. The lowest pubhshed human oral toxic dose is 430 mg/kg, causing nervous system disturbances and gastrointestinal symptoms. The LD q (rat, oral) is 750 mg/kg (183). Thiocyanates are destroyed readily by soil bacteria and by biological treatment systems in which the organisms become acclimatized to thiocyanate. Pyrolysis products and combustion products can include toxic hydrogen cyanide, hydrogen sulfide, sulfur oxides, and nitrogen oxides. [Pg.152]

Catalysts. Commercial sulfuric acid catalysts typically consist of vanadium and potassium salts supported on sUica, usually diatomaceous earth (see Diatomite). Catalyst peUets are available in various formulations, shapes, and sizes depending on the manufacturer and the particular converter pass in which they are to be used. A detailed discussion of oxidation catalysts for sulfuric acid production is available (107). [Pg.187]

Hot surfaces and electric sparks are potential ignition sources for carbon disulfide. The ignition temperature depends on specific conditions, and values from 90 to 120°C in air have been reported (2,22). Data on carbon disulfide oxidation and combustion have been summarized (18). Oxidation products ate generally sulfur dioxide [7446-09-5] and carbon dioxide [124-58-9J ... [Pg.27]

Catalyst lifetime for contemporary ethylene oxide catalysts is 1—2 years, depending on the severity of service, ie, ethylene oxide production rate and absence of feed poisons, primarily sulfur compounds. A large percentage (>95%) of the silver in spent catalysts can be recovered and recycled the other components are usually discarded because of thek low values. [Pg.202]

The performance of many metal-ion catalysts can be enhanced by doping with cesium compounds. This is a result both of the low ionization potential of cesium and its abiUty to stabilize high oxidation states of transition-metal oxo anions (50). Catalyst doping is one of the principal commercial uses of cesium. Cesium is a more powerflil oxidant than potassium, which it can replace. The amount of replacement is often a matter of economic benefit. Cesium-doped catalysts are used for the production of styrene monomer from ethyl benzene at metal oxide contacts or from toluene and methanol as Cs-exchanged zeofltes ethylene oxide ammonoxidation, acrolein (methacrolein) acryflc acid (methacrylic acid) methyl methacrylate monomer methanol phthahc anhydride anthraquinone various olefins chlorinations in low pressure ammonia synthesis and in the conversion of SO2 to SO in sulfuric acid production. [Pg.378]

In 1990 coal production in the United States reached 0.9 biUion metric tons (2) and worldwide production was estimated to be over four biUion metric tons. In 1982 it was estimated that at least 50% of the world coal production was cleaned in some manner before use (3). As higher quaUty coal reserves are depleted and more stringent environmental regulations on pollutants, particularly sulfur oxides, are enacted, this percentage is expected to increase. [Pg.252]

The purification of diethyl ether (see Chapter 4) is typical of liquid ethers. The most common contaminants are the alcohols or hydroxy compounds from which the ethers are prepared, their oxidation products (e.g. aldehydes), peroxides and water. Peroxides, aldehydes and alcohols can be removed by shaking with alkaline potassium permanganate solution for several hours, followed by washing with water, concentrated sulfuric acid [CARE], then water. After drying with calcium chloride, the ether is distilled. It is then dried with sodium or with lithium aluminium hydride, redistilled and given a final fractional distillation. The drying process should be repeated if necessary. [Pg.65]

The problems with the combustion reaction occur because the process also produces many other products, most of which are termed air pollutants. These can be carbon monoxide, carbon dioxide, oxides of sulfur, oxides of nitrogen, smoke, fly ash, metals, metal oxides, metal salts, aldehydes, ketones, acids, polynuclear hydrocarbons, and many others. Only in the past few decades have combustion engineers become concerned about... [Pg.78]

Finally, atmospheric chemical transformations are classified in terms of whether they occur as a gas (homogeneous), on a surface, or in a liquid droplet (heterogeneous). An example of the last is the oxidation of dissolved sulfur dioxide in a liquid droplet. Thus, chemical transformations can occur in the gas phase, forming secondary products such as NO2 and O3 in the liquid phase, such as SO2 oxidation in liquid droplets or water films and as gas-to-particle conversion, in which the oxidized product condenses to form an aerosol. [Pg.167]

Mix strong acidic gases with weak ones to facilitate production of sulfuric acid from sulfur oxides, thereby avoiding the release of weak acidic gases. [Pg.133]

Reactions with sulfides, polysulfides, sulfur oxides and the oxoacids of sulfur are complex and the products depend markedly on reaction conditions (see also p. 745 for blue crystals in chamber acid). Some examples are ... [Pg.447]

Treatment of macrocycle 278 with an excess of Caro s acid resulted in oxidation of all the sulfur atoms to sulfones and the azo group to an azoxy group (Scheme 181) (99MI4). The oxidation product 279 was formed in 42% yield. Products with smaller oxygen contents were obtained using weaker oxidizing agents. [Pg.157]


See other pages where Sulfur oxidation products is mentioned: [Pg.169]    [Pg.288]    [Pg.169]    [Pg.288]    [Pg.374]    [Pg.267]    [Pg.438]    [Pg.443]    [Pg.496]    [Pg.347]    [Pg.392]    [Pg.21]    [Pg.174]    [Pg.200]    [Pg.402]    [Pg.421]    [Pg.252]    [Pg.522]    [Pg.530]    [Pg.198]    [Pg.157]    [Pg.150]    [Pg.39]    [Pg.41]    [Pg.130]    [Pg.213]    [Pg.63]    [Pg.541]    [Pg.652]    [Pg.657]   
See also in sourсe #XX -- [ Pg.443 ]

See also in sourсe #XX -- [ Pg.386 ]




SEARCH



Sulfur oxide

Sulfur oxides oxidation

Sulfur oxidized

Sulfur oxidizer

Sulfur production

Sulfur products

Sulfurous oxide

© 2024 chempedia.info