Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur isomeric

Nucleophilic reactivity of the sulfur atom has received most attention. When neutral or very acidic medium is used, the nucleophilic reactivity occurs through the exocyclic sulfur atom. Kinetic studies (110) measure this nucleophilicity- towards methyl iodide for various 3-methyl-A-4-thiazoline-2-thiones. Rate constants are 200 times greater for these compounds than for the isomeric 2-(methylthio)thiazole. Thus 3-(2-pyridyl)-A-4-thiazoline-2-thione reacts at sulfur with methyl iodide (111). Methyl substitution on the ring doubles the rate constant. This high reactivity at sulfur means that, even when an amino (112, 113) or imino group (114) occupies the 5-position of the ring, alkylation takes place on sulfiu. For the same reason, 2-acetonyi derivatives are sometimes observed as by-products in the heterocyclization reaction of dithiocarba-mates with a-haloketones (115, 116). [Pg.391]

The a-thiocyanatoketones are easily obtainable from a-halocarbonyl compounds and metal thiocyanates (sodium, potassium, barium, or lead thiocyanate) (416, 484, 519, 659) in an alcoholic solution. Yields ranged from 80 to 95%. They are very sensitive substances that isomerize when reacted upon by acids, bases, or labile hydrogen and sulfur compounds. [Pg.271]

Although 2 methylpropene undergoes acid catalyzed hydration m dilute sulfuric acid to form tert butyl alcohol (Section 6 10) a different reaction occurs m more concentrated solutions of sulfuric acid Rather than form the expected alkyl hydrogen sulfate (see Sec tion 6 9) 2 methylpropene is converted to a mixture of two isomeric C Hig alkenes... [Pg.266]

Conditions of hydrogenation also determine the composition of the product. The rate of reaction is increased by increases in temperature, pressure, agitation, and catalyst concentration. Selectivity is increased by increasing temperature and negatively affected by increases in pressure, agitation, and catalyst. Double-bond isomerization is enhanced by a temperature increase but decreased with increasing pressure, agitation, and catalyst. Trans isomers may also be favored by use of reused (deactivated) catalyst or sulfur-poisoned catalyst. [Pg.126]

Thiothionyl Fluoride and Difluorodisulfane. Thiothionyl fluoride [1686-09-9] S=SF2, and difluorodisulfane [13709-35-8] FSSF, are isomeric compounds which may be prepared as a mixture by the action of various metal fluorides on sulfur vapor or S2CI2 vapor. Chemically, the two isomers are very similar and extremely reactive. However, in the absence of catalytic agents and other reactive species, FSSF is stable for days at ordinary temperatures and S=SF2 may be heated to 250°C without significant decomposition (127). Physical properties of the two isomers are given in Table 6. The microwave spectmm of S=SF2 has been reported (130). [Pg.244]

Fluorosulfuric acid [7789-21-17, HSO F, is a colodess-to-light yellow liquid that fumes strongly in moist air and has a sharp odor. It may be regarded as a mixed anhydride of sulfuric and hydrofluoric acids. Fluorosulfuric acid was first identified and characterized in 1892 (1). It is a strong acid and is employed as a catalyst and chemical reagent in a number of chemical processes, such as alkylation (qv), acylation, polymerization, sulfonation, isomerization, and production of organic fluorosulfates (see Friedel-CRAFTSreactions). [Pg.248]

The synthesis of 2,4-dihydroxyacetophenone [89-84-9] (21) by acylation reactions of resorcinol has been extensively studied. The reaction is performed using acetic anhydride (104), acetyl chloride (105), or acetic acid (106). The esterification of resorcinol by acetic anhydride followed by the isomerization of the diacetate intermediate has also been described in the presence of zinc chloride (107). Alkylation of resorcinol can be carried out using ethers (108), olefins (109), or alcohols (110). The catalysts which are generally used include sulfuric acid, phosphoric and polyphosphoric acids, acidic resins, or aluminum and iron derivatives. 2-Chlororesorcinol [6201-65-1] (22) is obtained by a sulfonation—chloration—desulfonation technique (111). 1,2,4-Trihydroxybenzene [533-73-3] (23) is obtained by hydroxylation of resorcinol using hydrogen peroxide (112) or peracids (113). [Pg.491]

Mixtures containing various concentrations of mono-, di-, and polyisopropylnaphthalenes have been prepared by treating molten naphthalene with concentrated sulfuric acid and propjiene at 150—200°C followed by distillation (39). Products comprised of such isomeric mixtures have extremely low pour points, ie, ca —50° C, are excellent multipurpose solvents, and have been evaluated as possible Hquid-phase heat-transfer oils. [Pg.487]

Naphthalenedisulfonic acid (Ebert-Merz a-acid) is partially isomerized in sulfuric acid at 160°C to 2,6-naphthalenedisulfonic acid. The reaction takes place by a desulfonation—resulfonation mechanism. [Pg.491]

Analytical and Test Methods. o-Nitrotoluene can be analyzed for purity and isomer content by infrared spectroscopy with an accuracy of about 1%. -Nitrotoluene content can be estimated by the decomposition of the isomeric toluene diazonium chlorides because the ortho and meta isomers decompose more readily than the para isomer. A colorimetric method for determining the content of the various isomers is based on the color which forms when the mononitrotoluenes are dissolved in sulfuric acid (45). From the absorption of the sulfuric acid solution at 436 and 305 nm, the ortho and para isomer content can be deterrnined, and the meta isomer can be obtained by difference. However, this and other colorimetric methods are subject to possible interferences from other aromatic nitro compounds. A titrimetric method, based on the reduction of the nitro group with titanium(III) sulfate or chloride, can be used to determine mononitrotoluenes (32). Chromatographic methods, eg, gas chromatography or high pressure Hquid chromatography, are well suited for the deterrnination of mononitrotoluenes as well as its individual isomers. Freezing points are used commonly as indicators of purity of the various isomers. [Pg.70]

Dinitration of toluene results in the formation of a number of isomeric products, and with a typical sulfuric—nitric acid nitrating mixture the following mixture ofisomers is obtained 75 wt % 2,4-dinitrotoluene [121-14-2] 19 wt % 2,6-dinitrotoluene [606-20-2], 2.5 wt % 3,4-dinitrotoluene [610-39-9], 1 wt %... [Pg.71]

An excess of crotonaldehyde or aUphatic, ahcyhc, and aromatic hydrocarbons and their derivatives is used as a solvent to produce compounds of molecular weights of 1000—5000 (25—28). After removal of unreacted components and solvent, the adduct referred to as polyester is decomposed in acidic media or by pyrolysis (29—36). Proper operation of acidic decomposition can give high yields of pure /n j ,/n7 j -2,4-hexadienoic acid, whereas the pyrolysis gives a mixture of isomers that must be converted to the pure trans,trans form. The thermal decomposition is carried out in the presence of alkaU or amine catalysts. A simultaneous codistillation of the sorbic acid as it forms and the component used as the solvent can simplify the process scheme. The catalyst remains in the reaction batch. Suitable solvents and entraining agents include most inert Hquids that bod at 200—300°C, eg, aUphatic hydrocarbons. When the polyester is spHt thermally at 170—180°C and the sorbic acid is distilled direcdy with the solvent, production and purification can be combined in a single step. The solvent can be reused after removal of the sorbic acid (34). The isomeric mixture can be converted to the thermodynamically more stable trans,trans form in the presence of iodine, alkaU, or sulfuric or hydrochloric acid (37,38). [Pg.283]

Physical Properties. Ammonium thiocyanate [1762-95-4] NH SCN, is a hygroscopic crystalline soHd which deHquesces at high humidities (375,376). It melts at 149°C with partial isomerization to thiourea. It is soluble in water to the extent of 65 wt % at 25°C and 77 wt % at 60°C. It is also soluble to 35 wt % in methanol and 20 wt % in ethanol at 25°C. It is highly soluble in Hquid ammonia and Hquid sulfur dioxide, and moderately soluble in acetonitrile. [Pg.151]

Positionalisomeri tion occurs most often duting partial hydrogenation of unsaturated fatty acids it also occurs ia strongly basic or acidic solution and by catalysis with metal hydrides or organometaUic carbonyl complexes. Concentrated sulfuric or 70% perchloric acid treatment of oleic acid at 85°C produces y-stearolactone from a series of double-bond isomerizations, hydration, and dehydration steps (57). [Pg.86]

Carbonylation, or the Koch reaction, can be represented by the same equation as for hydrocarboxylation. The catalyst is H2SO4. A mixture of C-19 dicarboxyhc acids results due to extensive isomerization of the double bond. Methyl-branched isomers are formed by rearrangement of the intermediate carbonium ions. Reaction of oleic acid with carbon monoxide at 4.6 MPa (45 atm) using 97% sulfuric acid gives an 83% yield of the C-19 dicarboxyhc acid (82). Further optimization of the reaction has been reported along with physical data of the various C-19 dibasic acids produced. The mixture of C-19 acids was found to contain approximately 25% secondary carboxyl and 75% tertiary carboxyl groups. As expected, the tertiary carboxyl was found to be very difficult to esterify (80,83). [Pg.63]

In laboratory preparations, sulfuric acid and hydrochloric acid have classically been used as esterification catalysts. However, formation of alkyl chlorides or dehydration, isomerization, or polymerization side reactions may result. Sulfonic acids, such as benzenesulfonic acid, toluenesulfonic acid, or methanesulfonic acid, are widely used in plant operations because of their less corrosive nature. Phosphoric acid is sometimes employed, but it leads to rather slow reactions. Soluble or supported metal salts minimize side reactions but usually require higher temperatures than strong acids. [Pg.376]

Although it is seldom used, esterification of pyrimidinecarboxylic acids proceeds normally. Conditions are illustrated by the conversion of pyrimidine-4-carboxylic acid (181 R = H) into its methyl ester (181 R = Me) by methanol/sulfuric acid (47%), methanol/hydrogen chloride (80%), or by diazomethane (ca. 100%) (60MI21300). The isomeric methyl pyrimidine-2-carboxylate is formed by treatment of the silver salt of the acid with methyl iodide. Higher esters, e.g. (182 R = Bu), are usually made by warming the acid (182 R = H) with the appropriate alcohol and sulfuric acid (60JOC1950). [Pg.80]

Phenazine mono-N-oxides have also been prepared from nitrobenzene derivatives. Condensation of nitrobenzene with aniline using dry NaOH at 120-130 °C results in modest yields of phenazine 5-oxide, although the precise mechanism of this reaction is not well understood (57HC(ll)l) with unsymmetrical substrates it is not possible to predict which of the isomeric fV-oxides will be produced. Nitrosobenzene derivatives also function as a source of phenazine mono-fV-oxides thus, if 4-chloronitrosobenzene is treated with sulfuric acid in acetic acid at 20 °C the fV-oxide is formed (Scheme 21). [Pg.171]

The configuration of pairs of isomeric 4-aryIidene-5-pyrazoIones, (Z)- and (E)-(117), was determined by H NMR data (72G491). When R is H, the E configuration is preferred when it is a methyl or a phenyl group, the Z configuration predominates. The presence of an exocyclic sulfur atom as in (118) lowers the interconversion barrier and the products... [Pg.208]

JOC1537). The mechanisms of these transformations may involve homolytic or heterolytic C —S bond fission. A sulfur-walk mechanism has been proposed to account for isomerization or automerization of Dewar thiophenes and their 5-oxides e.g. 31 in Scheme 17) (76JA4325). Calculations show that a symmetrical pyramidal intermediate with the sulfur atom centered over the plane of the four carbon atoms is unlikely <79JOU140l). Reactions which may be mechanistically similar to that shown in Scheme 18 are the thermal isomerization of thiirane (32 Scheme 19) (70CB949) and the rearrangement of (6) to a benzothio-phene (80JOC4366). [Pg.143]


See other pages where Sulfur isomeric is mentioned: [Pg.22]    [Pg.22]    [Pg.777]    [Pg.22]    [Pg.22]    [Pg.777]    [Pg.133]    [Pg.19]    [Pg.11]    [Pg.551]    [Pg.457]    [Pg.166]    [Pg.168]    [Pg.438]    [Pg.80]    [Pg.83]    [Pg.148]    [Pg.232]    [Pg.97]    [Pg.102]    [Pg.41]    [Pg.152]    [Pg.153]    [Pg.287]    [Pg.48]    [Pg.74]    [Pg.147]    [Pg.169]    [Pg.22]    [Pg.135]    [Pg.139]    [Pg.140]    [Pg.143]    [Pg.145]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.684 ]

See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.684 ]




SEARCH



Sulfur dioxide isomerization

Sulfur in Hydrogenation, Isomerization, and Related Reactions

Sulfur rotational isomerism

Sulfuric acid isomerization

© 2024 chempedia.info