Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfide oxidation rates

In summary, the reaction of H2S with y-FeOOH is a fast surface-controlled process. Equations 8 and 9 can be used to estimate an upper limit of sulfide oxidation rates in sediments with reactive iron (assuming reactive iron to be represented by lepidocrocite). The surface-area concentration A of reactive iron can be calculated according to... [Pg.378]

Integration of the measured H235S oxidation rates in the Black Sea chemo-cline yielded values between 53 and 125 Tgyear-1 [33,86,87]. Rate measurements and modeling data gave median sulfide oxidation rates at the oxic/anoxic interface in the range 20-50 Tgyear-1 [75]. [Pg.324]

Sulfur. Low sulfur stocks and EV sulfur-accelerated systems have better aging resistance. Normally, the oxidation rate increases with the amount of sulfur used in the cure. The increased rate may be due to activation of adjacent C—H groups by high levels of combined sulfur. Saturated sulfides are more inert to oxidation than aHyUc sulfides. Polysulfidic cross-links impart excessive hardening of SBR as compared to more stable monosulfidic cross-links. [Pg.246]

Stillings 1995). This dissolution generates an Al-Ca-poor thin layer at the surface, which is consistent with the lower Al-Ca release rates obtained in the leaching waters of the weathered waste rocks. The S release rates obtained from the fresh and weathered waste rocks are of the same order, suggesting that sulfide oxidation occurs at approximately the same rate in both, assuming that all the oxidation products do end up in the... [Pg.364]

A reliable concrete corrosion rate is difficult to predict. As already mentioned and also shown in Figure 4.4, it requires that several process and exchange rates in terms of primarily sulfide formation, emission to the sewer atmosphere, sulfide absorption and sulfide oxidation on the sewer walls can be determined. [Pg.148]

Injection of air the oxygen in the injected air will prevent sulfate-reducing conditions in the sewer. The DO concentration in the wastewater establishes an aerobic upper layer in the biofilm, and sulfide produced in the deeper part of the biofilm or the deposits that may diffuse into the water phase will be oxidized (cf. Figure 6.2). The oxidation of sulfide will mainly proceed as a chemical process, although microbial oxidation may also take place (Chen and Morris, 1972). Factors that affect the oxidation rate of sulfide include pH, temperature and presence of catalysts, e.g., heavy metals. [Pg.153]

As far as organic matter transformations are concerned, the process rates are significantly slower compared with aerobic transformations. Basically, readily biodegradable organic matter is preserved and even, to some extent, produced opposite to the situation when aerobic processes proceed. The sulfur cycle, until now included in the sewer process model, is relatively simply described following empirical expressions for sulfide formation. Other important processes in this respect, e.g., hydrogen sulfide emission and sulfide oxidation, still need to be included, however, and, most of all, investigated from a conceptual point of view. [Pg.196]

Measurements of S cycling in Little Rock Lake, Wisconsin, and Lake Sempach, Switzerland, are used together with literature data to show the major factors regulating S retention and speciation in sediments. Retention of S in sediments is controlled by rates of seston (planktonic S) deposition, sulfate diffusion, and S recycling. Data from 80 lakes suggest that seston deposition is the major source of sedimentary S for approximately 50% of the lakes sulfate diffusion and subsequent reduction dominate in the remainder. Concentrations of sulfate in lake water and carbon deposition rates are important controls on diffusive fluxes. Diffusive fluxes are much lower than rates of sulfate reduction, however. Rates of sulfate reduction in many lakes appear to be limited by rates of sulfide oxidation. Much sulfide oxidation occurs anaerobically, but the pathways and electron acceptors remain unknown. The intrasediment cycle of sulfate reduction and sulfide oxidation is rapid relative to rates of S accumulation in sediments. Concentrations and speciation of sulfur in sediments are shown to be sensitive indicators of paleolimnological conditions of salinity, aeration, and eutrophication. [Pg.324]

Abiotic oxidation of sulfide by oxygen cannot supply sulfate at rates comparable to rates of sulfate reduction. Unless high concentrations of sulfide develop and the zone of oxidation is much greater than 1 cm, rates of chemical oxidation of sulfide by oxygen will be much less than 1 mmol/m2 per day (calculated from rates laws found in refs. 115-118). Such conditions can exist in stratified water columns in the Black Sea water column chemical oxidation rates may be as high as 10 mmol/m2 per day (84). However, in lakes in which sulfide is undetectable in the water column and oxygen disappears within millimeters of the sediment-water interface (e.g., 113), chemical oxidation of sulfide by oxygen is unlikely to be important. [Pg.336]

Oxidation of Reduced S. Indirect evidence suggests that microbial oxidation of sulfide is important in sediments. If it is assumed that loss of organic S from sediments occurs via formation of H2S and subsequent oxidation of sulfide to sulfate (with the exception of pyrite, no intermediate oxidation states accumulate in sediments cf. 120, 121), the stated estimates of organic S mineralization suggest that sulfide production and oxidation rates of 3.6-124 mmol/m2 per year occur in lake sediments. Similar estimates were made by Cook and Schindler (1.5 mmol/m2 per year 122) and Nriagu (11 mmol/m2 per year 25). A comparison of sulfate reduction rates (Table I) and rates of reduced S accumulation in sediments (Table III) indicates that most sulfide produced by sulfate reduction also must be reoxidized but at rates of 716-8700 mmol/m2 per year. Comparison of abiotic and microbial oxidation rates suggests that such high rates of sulfide oxidation are possible only via microbial mediation. [Pg.338]

Measured rates of microbial oxidation of sulfide in lakes range from 0 to over 100,000 mmol/m2 per year (Table IV). These rates, which are comparable to measured rates of sulfate reduction (Table I), suggest that microbial oxidation of sulfide is capable of supplying sulfate at rates needed to sustain sulfate reduction. The majority of measurements are for photosynthetic bacteria in the water column. Symbiotic sulfate reduction and sulfide oxidation are known to occur and lead to dynamic cycling of S within anaerobic water... [Pg.338]

Measured rates of sulfate reduction can be sustained only if rapid reoxidation of reduced S to sulfate occurs. A variety of mechanisms for oxidation of reduced S under aerobic and anaerobic conditions are known. Existing measurements of sulfide oxidation under aerobic conditions suggest that each known pathway is rapid enough to resupply the sulfate required for sulfate reduction if sulfate is the major end product of the oxidation (Table IV). Clearly, different pathways will be important in different lakes, depending on the depth of the anoxic zone and the availability of light. All measurements of sulfate reduction in intact cores point to the importance of anaerobic reoxidation of sulfide. Little is known about anaerobic oxidation of sulfide in fresh waters. There are no measurements of rates of different pathways, and it is not yet clear whether iron or manganese oxides are the primary electron acceptors. [Pg.342]

Figure 6. An idealized scheme for a sedimentary porous medium with pore walls covered by a biofilm. High sulfate reduction rates are maintained even in depths to which sulfate cannot diffuse because of recycling of sulfate within the biofilm. Numbered points (in black circles) denote the following processes I, Respiration consumes oxygen. 2, Microbial reduction of reactive metal Oxides. Reduction of reactive ferric oxides is in equilibrium with reoxidation of ferrous iron by Os. Thus, no net loss of reactive iron takes place in these layers. 3, Microbial reduction of ferric oxides. 4, Sulfate reduction rate (denoted as SRR). 5, Sulfide oxidation, either microbiologically or chemically. 6, Sulfide builds up within the hiofilm, sulfate consumption increases, reactive iron pool decreases. 7, Formation of iron sulfides. Figure 6. An idealized scheme for a sedimentary porous medium with pore walls covered by a biofilm. High sulfate reduction rates are maintained even in depths to which sulfate cannot diffuse because of recycling of sulfate within the biofilm. Numbered points (in black circles) denote the following processes I, Respiration consumes oxygen. 2, Microbial reduction of reactive metal Oxides. Reduction of reactive ferric oxides is in equilibrium with reoxidation of ferrous iron by Os. Thus, no net loss of reactive iron takes place in these layers. 3, Microbial reduction of ferric oxides. 4, Sulfate reduction rate (denoted as SRR). 5, Sulfide oxidation, either microbiologically or chemically. 6, Sulfide builds up within the hiofilm, sulfate consumption increases, reactive iron pool decreases. 7, Formation of iron sulfides.
Flosdorf and Chambers (1933) reported that metal sulfides were oxidized in the presence of audible sound (1 to 15 kHz) while investigating the bactericidal action of audible sound however, Schmitt et al. (1929) were the first researchers to observe the rapid oxidation of dissolved H2S gas to colloidal sulfur during sonication at 750 kHz with a 250-W power source. They reported that an increase in the total pressure of the system (P02) led to higher oxidation rates up to a limiting critical pressure. This critical pressure depended on the amount of dissolved H2S gas and the intensity of irradiation. The primary oxidation product was found to be elemental sulfur. The overall reaction was thought to proceed via reactions of HS with OH radicals, HO radicals, or H202. [Pg.469]

Many factors affect the oxidation rates of sulfide minerals and the chemistry of their oxidation products. A few of the important factors are briefly introduced in this section and discussed in further detail in this and later chapters. As a result of the complex interactions between these different factors, high-arsenic rocks and mining wastes will not automatically produce high-arsenic weathering products and aqueous solutions (Piske, 1990). [Pg.97]


See other pages where Sulfide oxidation rates is mentioned: [Pg.329]    [Pg.378]    [Pg.381]    [Pg.244]    [Pg.83]    [Pg.252]    [Pg.6]    [Pg.329]    [Pg.378]    [Pg.381]    [Pg.244]    [Pg.83]    [Pg.252]    [Pg.6]    [Pg.119]    [Pg.113]    [Pg.412]    [Pg.129]    [Pg.363]    [Pg.106]    [Pg.481]    [Pg.104]    [Pg.481]    [Pg.772]    [Pg.334]    [Pg.335]    [Pg.339]    [Pg.339]    [Pg.340]    [Pg.340]    [Pg.341]    [Pg.341]    [Pg.343]    [Pg.352]    [Pg.381]    [Pg.602]    [Pg.97]    [Pg.98]   
See also in sourсe #XX -- [ Pg.338 ]




SEARCH



Oxides sulfides

Sulfidation rates

Sulfide rates

Sulfides oxidation

© 2024 chempedia.info