Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Primary electrons

The value of -NMR and 13C-NMR spectroscopy in characterizing transition metal carbene complexes was noted in Section III,B,2. The carbene carbon resonance is invariably found at low field (200-400 ppm) in the 13C-NMR spectrum, while protons attached to Ca in 18-electron primary and secondary carbene complexes also resonate at low fields. NMR data for some Ru, Os, and Ir alkylidene complexes and related compounds are given in Table V. [Pg.163]

Li2S204 being the SEI component at the Li anode and the solid discharge product at the carbon cathode. The Li—SOCI2 and Li—SO2 systems have excellent operational characteristics in a temperature range from —40 to 60 °C (SOCI2) or 80 °C (SO2). Typical applications are military, security, transponder, and car electronics. Primary lithium cells have also various medical uses. The lithium—silver—vanadium oxide system finds application in heart defibrillators. The lithium—iodine system with a lithium iodide solid electrolyte is the preferred pacemaker cell. [Pg.18]

Emission Photoelectron Secondary Auger electron Primary ion Secondary ion... [Pg.281]

Radicals are classified according to the carbon that bears the unpaired electron. Primary radicals have the unshared electron on a primary carbon, secondary radicals have the unshared electron on a secondary carbon, and tertiary radicals have the unshared electron on a tertiary carbon. [Pg.560]

At higher current densities, the primary electron transfer rate is usually no longer limiting instead, limitations arise tluough the slow transport of reactants from the solution to the electrode surface or, conversely, the slow transport of the product away from the electrode (diffusion overpotential) or tluough the inability of chemical reactions coupled to the electron transfer step to keep pace (reaction overpotential). [Pg.603]

In our simple model, the expression in A2.4.135 corresponds to the activation energy for a redox process in which only the interaction between the central ion and the ligands in the primary solvation shell is considered, and this only in the fonn of the totally synnnetrical vibration. In reality, the rate of the electron transfer reaction is also infiuenced by the motion of molecules in the outer solvation shell, as well as by other... [Pg.605]

The two primary causes of shielding by electrons are diamagnetism and temperature-independent paramagnetism (TIP). Diamagnetism arises from the slight unpairing of electron orbits under the influence of the magnetic field. This always occurs so as to oppose the field and was first analysed by Lamb [7]. A simplified version of his fomuila. [Pg.1445]

Figure Bl.15.11. Fomiation of electron spin echoes. (A) Magnetization of spin packets i,j, /rand / during a two-pulse experiment (rotating frame representation). (B) The pulse sequence used to produce a stimulated echo. In addition to this echo, which appears at r after the third pulse, all possible pairs of the tluee pulses produce primary echoes. These occur at times 2x, 2(x+T) and (x+2T). Figure Bl.15.11. Fomiation of electron spin echoes. (A) Magnetization of spin packets i,j, /rand / during a two-pulse experiment (rotating frame representation). (B) The pulse sequence used to produce a stimulated echo. In addition to this echo, which appears at r after the third pulse, all possible pairs of the tluee pulses produce primary echoes. These occur at times 2x, 2(x+T) and (x+2T).
The electron-spm echo envelope modulation (ESEEM) phenomenon [37, 38] is of primary interest in pulsed EPR of solids, where anisotropic hyperfme and nuclear quadnipole interactions persist. The effect can be observed as modulations of the echo intensity in two-pulse and three-pulse experiments in which x or J is varied. In liquids the modulations are averaged to zero by rapid molecular tumbling. The physical origin of ESEEM can be understood in tenns of the four-level spin energy diagram for the S = I = model system... [Pg.1578]

Wliile the earliest TR-CIDNP work focused on radical pairs, biradicals soon became a focus of study. Biradicals are of interest because the exchange interaction between the unpaired electrons is present tliroiighoiit the biradical lifetime and, consequently, the spin physics and chemical reactivity of biradicals are markedly different from radical pairs. Work by Morozova et al [28] on polymethylene biradicals is a fiirther example of how this method can be used to separate net and multiplet effects based on time scale [28]. Figure Bl.16.11 shows how the cyclic precursor, 2,12-dihydroxy-2,12-dimethylcyclododecanone, cleaves upon 308 mn irradiation to fonn an acyl-ketyl biradical, which will be referred to as the primary biradical since it is fonned directly from the cyclic precursor. The acyl-ketyl primary biradical decarbonylates rapidly k Q > 5 x... [Pg.1605]

Figure Bl.25.6. Energy spectrum of electrons coming off a surface irradiated with a primary electron beam. Electrons have lost energy to vibrations and electronic transitions (loss electrons), to collective excitations of the electron sea (plasmons) and to all kinds of inelastic process (secondary electrons). The element-specific Auger electrons appear as small peaks on an intense background and are more visible in a derivative spectrum. Figure Bl.25.6. Energy spectrum of electrons coming off a surface irradiated with a primary electron beam. Electrons have lost energy to vibrations and electronic transitions (loss electrons), to collective excitations of the electron sea (plasmons) and to all kinds of inelastic process (secondary electrons). The element-specific Auger electrons appear as small peaks on an intense background and are more visible in a derivative spectrum.
A strong point of EELS is that it detects losses in a very broad energy range, which comprises the entire infrared regime and extends even to electronic transitions at several electron volts. EELS spectrometers have to satisfy a number of stringent requirements. First, the primary electrons should be monochromatic. Second,... [Pg.1865]

Given a set of A -electron space- and spin-synnnetty-adapted configuration state fiinctions in tenns of which is to be expanded as T = S. Cj two primary questions arise (1) how to detemiine the 9 coefficients and the energy E and (2) how to find the best spin orbitals ( ). ] Let us first consider the 1 where a single configuration is used so only the question of detemiining the spin orbitals exists. [Pg.2167]

The reaction center has either to be spedfied when inputting a reaction into a database, or it has to be determined automatically. Specification on input is time-consuming but it can benefit from the insight of the human expert, particularly so if the reaction input is done by the primary investigator as is the case in an electronic notebook. Automatic determination of reaction centers is difficult, particularly so when incomplete readion equations are given where the stoichiometry of a reaction is not balanced see Section 3.1). One approach is to try first to complete the stoichiometry of a reaction equation by filling in the missing molecules such as water, N2, etc. and then to start with reaction center determination. A few systems for automatic reaction center specification are available. However, little has been published on this matter and therefore it is not discussed in any detail here. [Pg.175]


See other pages where Primary electrons is mentioned: [Pg.122]    [Pg.371]    [Pg.80]    [Pg.292]    [Pg.319]    [Pg.761]    [Pg.663]    [Pg.39]    [Pg.582]    [Pg.548]    [Pg.577]    [Pg.196]    [Pg.39]    [Pg.1015]    [Pg.217]    [Pg.122]    [Pg.371]    [Pg.80]    [Pg.292]    [Pg.319]    [Pg.761]    [Pg.663]    [Pg.39]    [Pg.582]    [Pg.548]    [Pg.577]    [Pg.196]    [Pg.39]    [Pg.1015]    [Pg.217]    [Pg.267]    [Pg.310]    [Pg.33]    [Pg.539]    [Pg.272]    [Pg.308]    [Pg.395]    [Pg.873]    [Pg.1547]    [Pg.1630]    [Pg.1632]    [Pg.1640]    [Pg.1800]    [Pg.1968]    [Pg.1985]    [Pg.2223]    [Pg.2860]    [Pg.2873]    [Pg.2911]    [Pg.2948]    [Pg.2991]   
See also in sourсe #XX -- [ Pg.458 ]

See also in sourсe #XX -- [ Pg.458 ]

See also in sourсe #XX -- [ Pg.384 ]




SEARCH



Absorption spectra primary electron donor

Dimeric primary electron donor

Electron capture primary products

Electron ionization primary electrons

Electronically excited molecule primary processes

Generation of Primary Electrons

Green sulfur bacteria primary electron donor

Photosynthetic bacteria Primary electron donor

Primary Electron Sources

Primary Electronics for Sensors

Primary electron beam

Primary event electron transfer model

Quinones, primary electron acceptor

The Asymmetry of Primary Electron Transfer

The primary electron donor

Valence electrons, primary steric effects

© 2024 chempedia.info