Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfate dioxide

U02S04 URANIUM SULFATE DIOXIDE 1754 WCI6[g] TUNGSTEN HEXACHLORIDE (GAS) 1796... [Pg.1920]

Organic compounds containing sulfur are very important. Calcium sulfur, ammonium sulfate, carbon disulfide, sulfur dioxide, and hydrogen sulfide are but a few of the many important compounds of sulfur. [Pg.39]

Sellaite, see Magnesium fluoride Senarmontite, see Antimony(III) oxide Siderite, see Iron(II) carbonate Siderotil, see Iron(II) sulfate 5-water Silica, see Silicon dioxide Silicotungstic acid, see Silicon oxide—tungsten oxide—water (1/12/26)... [Pg.275]

Thenardite, see Sodium sulfate Thionyl, see Sulflnyl Thorianite, see Thorium dioxide Topaz, see Aluminum hexafluorosilicate Tridymite, see Silicon dioxide Troilite, see Iron(II) sulflde... [Pg.275]

Manganese(II) can be titrated directly to Mn(III) using hexacyanoferrate(III) as the oxidant. Alternatively, Mn(III), prepared by oxidation of the Mn(II)-EDTA complex with lead dioxide, can be determined by titration with standard iron(II) sulfate. [Pg.1168]

Hydroxylamine Barium oxide and peroxide, carbonyls, chlorine, copper(II) sulfate, dichromates, lead dioxide, phosphorus trichloride and pentachloride, permanganates, pyridine, sodium, zinc... [Pg.1209]

Even ia 1960 a catalytic route was considered the answer to the pollution problem and the by-product sulfate, but nearly ten years elapsed before a process was developed that could be used commercially. Some of the eadier attempts iacluded hydrolysis of acrylonitrile on a sulfonic acid ion-exchange resia (69). Manganese dioxide showed some catalytic activity (70), and copper ions present ia two different valence states were described as catalyticaHy active (71), but copper metal by itself was not active. A variety of catalysts, such as Umshibara or I Jllmann copper and nickel, were used for the hydrolysis of aromatic nitriles, but aUphatic nitriles did not react usiag these catalysts (72). Beginning ia 1971 a series of patents were issued to The Dow Chemical Company (73) describiag the use of copper metal catalysis. Full-scale production was achieved the same year. A solution of acrylonitrile ia water was passed over a fixed bed of copper catalyst at 85°C, which produced a solution of acrylamide ia water with very high conversions and selectivities to acrylamide. [Pg.135]

In the commonly used Welland process, calcium cyanamide, made from calcium carbonate, is converted to cyanamide by reaction with carbon dioxide and water. Dicyandiamide is fused with ammonium nitrate to form guanidine nitrate. Dehydration with 96% sulfuric acid gives nitroguanidine which is precipitated by dilution. In the aqueous fusion process, calcium cyanamide is fused with ammonium nitrate ia the presence of some water. The calcium nitrate produced is removed by precipitation with ammonium carbonate or carbon dioxide. The filtrate contains the guanidine nitrate that is recovered by vacuum evaporation and converted to nitroguanidine. Both operations can be mn on a continuous basis (see Cyanamides). In the Marquerol and Loriette process, nitroguanidine is obtained directly ia about 90% yield from dicyandiamide by reaction with sulfuric acid to form guanidine sulfate followed by direct nitration with nitric acid (169—172). [Pg.16]

Formation of emissions from fluidised-bed combustion is considerably different from that associated with grate-fired systems. Flyash generation is a design parameter, and typically >90% of all soHds are removed from the system as flyash. SO2 and HCl are controlled by reactions with calcium in the bed, where the lime-stone fed to the bed first calcines to CaO and CO2, and then the lime reacts with sulfur dioxide and oxygen, or with hydrogen chloride, to form calcium sulfate and calcium chloride, respectively. SO2 and HCl capture rates of 70—90% are readily achieved with fluidi2ed beds. The limestone in the bed plus the very low combustion temperatures inhibit conversion of fuel N to NO. ... [Pg.58]

Magnesium sulfate heptahydrate may be prepared by neutralization of sulfuric acid with magnesium carbonate or oxide, or it can be obtained directly from natural sources. It occurs abundantly as a double salt and can also be obtained from the magnesium salts that occur in brines used for the extraction of bromine (qv). The brine is treated with calcium hydroxide to precipitate magnesium hydroxide. Sulfur dioxide and air are passed through the suspension to yield magnesium sulfate (see Chemicals frombrine). Magnesium sulfate is a saline cathartic. [Pg.202]

At room temperature, hafnium dioxide is slowly dissolved by hydrofluoric acid. At elevated temperatures, hafnium dioxide reacts with concentrated sulfuric acid or alkaU bisulfates to form various sulfates, with carbon tetrachloride or with chlorine in the presence of carbon to form hafnium tetrachloride, with alkaline fluorosiUcates to form alkaU fluorohafnates, with alkaUes to form alkaline hafnates, and with carbon above 1500°C to form hafnium carbide. [Pg.445]

The yield of hydroquinone is 85 to 90% based on aniline. The process is mainly a batch process where significant amounts of soHds must be handled (manganese dioxide as well as metal iron finely divided). However, the principal drawback of this process resides in the massive coproduction of mineral products such as manganese sulfate, ammonium sulfate, or iron oxides which are environmentally not friendly. Even though purified manganese sulfate is used in the agricultural field, few solutions have been developed to dispose of this unsuitable coproduct. Such methods include MnSO reoxidation to MnO (1), or MnSO electrochemical reduction to metal manganese (2). None of these methods has found appHcations on an industrial scale. In addition, since 1980, few innovative studies have been pubUshed on this process (3). [Pg.487]

The quantitative conversion of thiosulfate to tetrathionate is unique with iodine. Other oxidant agents tend to carry the oxidation further to sulfate ion or to a mixture of tetrathionate and sulfate ions. Thiosulfate titration of iodine is best performed in neutral or slightly acidic solutions. If strongly acidic solutions must be titrated, air oxidation of the excess of iodide must be prevented by blanketing the solution with an inert gas, such as carbon dioxide or... [Pg.364]

C. Further warming to 65°C forms white iron sulfate monohydrate [17375-41 -6], FeSO H2O, which is stable to 300°C. Strong beating results in decomposition with loss of sulfur dioxide. Solutions of iron(II) sulfate reduce nitrate and nitrite to nitric oxide, whereupon the highly colored [Fe(H20) (N0)] ion is formed. This reaction is the basis of the brown ring text for the quaUtative deterrnination of nitrate or nitrite. [Pg.438]

Modem chrome-tanning methods are weU controUed and employ an extensive knowledge of the chemistry of the system. The most common chromium-tanning material used is basic chromium sulfate [12336-95-7] Cr(0H)S04, made by the reduction of sodium bichromate with sulfur dioxide or by sulfuric acid and a sugar. [Pg.85]

Roasting ofSulRdes. Most nonferrous metals occur in nature mainly as sulfides. These cannot be easily reduced directly to the metal. Burning metallic sulfides in air transforms them into oxides or sulfates which are more easily reduced. The sulfur is released as sulfur dioxide, as shown by the foHowing typical reaction for a divalent metal, M ... [Pg.164]

The aqueous sodium naphthenate phase is decanted from the hydrocarbon phase and treated with acid to regenerate the cmde naphthenic acids. Sulfuric acid is used almost exclusively, for economic reasons. The wet cmde naphthenic acid phase separates and is decanted from the sodium sulfate brine. The volume of sodium sulfate brine produced from dilute sodium naphthenate solutions is significant, on the order of 10 L per L of cmde naphthenic acid. The brine contains some phenolic compounds and must be treated or disposed of in an environmentally sound manner. Sodium phenolates can be selectively neutralized using carbon dioxide and recovered before the sodium naphthenate is finally acidified with mineral acid (29). Recovery of naphthenic acid from aqueous sodium naphthenate solutions using ion-exchange resins has also been reported (30). [Pg.511]


See other pages where Sulfate dioxide is mentioned: [Pg.391]    [Pg.45]    [Pg.54]    [Pg.76]    [Pg.209]    [Pg.213]    [Pg.537]    [Pg.1754]    [Pg.536]    [Pg.391]    [Pg.45]    [Pg.54]    [Pg.76]    [Pg.209]    [Pg.213]    [Pg.537]    [Pg.1754]    [Pg.536]    [Pg.49]    [Pg.50]    [Pg.52]    [Pg.106]    [Pg.274]    [Pg.526]    [Pg.28]    [Pg.33]    [Pg.377]    [Pg.389]    [Pg.231]    [Pg.164]    [Pg.379]    [Pg.552]    [Pg.497]    [Pg.497]    [Pg.501]    [Pg.361]    [Pg.388]    [Pg.38]    [Pg.52]    [Pg.145]    [Pg.506]    [Pg.511]    [Pg.524]   
See also in sourсe #XX -- [ Pg.578 ]




SEARCH



1.3.2- Dioxathiolane 2,2-dioxide [ethylene sulfate

Alkali metal sulfates, sulfur dioxide

Atmospheric sulfur dioxide using sulfation

Calcium sulfate Carbon dioxide

Dioxide sulfate process

Secondary sulfate from sulfur dioxide

Sulfate process, titanium dioxide pigment

Sulfate process, titanium dioxide pigment production

Sulfur dioxide to sulfate

Sulfur dioxide-sulfate pathway

Titanium dioxide sulfate process

© 2024 chempedia.info