Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject formation

Changeling, seen in this light, seems almost to demand to be taken as an early modern exemplar of psychoanalytic theories of subject-formation -that is, Beatrice-Joanna s rejection of De Flores can be read as expressive of something deeper both within herself and within the culture she inhabits. [Pg.226]

A general prerequisite for the existence of a stable interface between two phases is that the free energy of formation of the interface be positive were it negative or zero, fluctuations would lead to complete dispersion of one phase in another. As implied, thermodynamics constitutes an important discipline within the general subject. It is one in which surface area joins the usual extensive quantities of mass and volume and in which surface tension and surface composition join the usual intensive quantities of pressure, temperature, and bulk composition. The thermodynamic functions of free energy, enthalpy and entropy can be defined for an interface as well as for a bulk portion of matter. Chapters II and ni are based on a rich history of thermodynamic studies of the liquid interface. The phase behavior of liquid films enters in Chapter IV, and the electrical potential and charge are added as thermodynamic variables in Chapter V. [Pg.1]

The influence of electrical charges on surfaces is very important to their physical chemistry. The Coulombic interaction between charged colloids is responsible for a myriad of behaviors from the formation of opals to the stability of biological cells. Although this is a broad subject involving both practical application and fundamental physics and chemistry, we must limit our discussion to those areas having direct implications for surface science. [Pg.169]

Generally speaking, intermolecular forces act over a short range. Were this not the case, the specific energy of a portion of matter would depend on its size quantities such as molar enthalpies of formation would be extensive variables On the other hand, the cumulative effects of these forces between macroscopic bodies extend over a rather long range and the discussion of such situations constitutes the chief subject of this chapter. [Pg.225]

Dislocation theory as a portion of the subject of solid-state physics is somewhat beyond the scope of this book, but it is desirable to examine the subject briefly in terms of its implications in surface chemistry. Perhaps the most elementary type of defect is that of an extra or interstitial atom—Frenkel defect [110]—or a missing atom or vacancy—Schottky defect [111]. Such point defects play an important role in the treatment of diffusion and electrical conductivities in solids and the solubility of a salt in the host lattice of another or different valence type [112]. Point defects have a thermodynamic basis for their existence in terms of the energy and entropy of their formation, the situation is similar to the formation of isolated holes and erratic atoms on a surface. Dislocations, on the other hand, may be viewed as an organized concentration of point defects they are lattice defects and play an important role in the mechanism of the plastic deformation of solids. Lattice defects or dislocations are not thermodynamic in the sense of the point defects their formation is intimately connected with the mechanism of nucleation and crystal growth (see Section IX-4), and they constitute an important source of surface imperfection. [Pg.275]

There is always some degree of adsorption of a gas or vapor at the solid-gas interface for vapors at pressures approaching the saturation pressure, the amount of adsorption can be quite large and may approach or exceed the point of monolayer formation. This type of adsorption, that of vapors near their saturation pressure, is called physical adsorption-, the forces responsible for it are similar in nature to those acting in condensation processes in general and may be somewhat loosely termed van der Waals forces, discussed in Chapter VII. The very large volume of literature associated with this subject is covered in some detail in Chapter XVII. [Pg.350]

Other properties of association colloids that have been studied include calorimetric measurements of the heat of micelle formation (about 6 kcal/mol for a nonionic species, see Ref. 188) and the effect of high pressure (which decreases the aggregation number [189], but may raise the CMC [190]). Fast relaxation methods (rapid flow mixing, pressure-jump, temperature-jump) tend to reveal two relaxation times t and f2, the interpretation of which has been subject to much disagreement—see Ref. 191. A fast process of fi - 1 msec may represent the rate of addition to or dissociation from a micelle of individual monomer units, and a slow process of ti < 100 msec may represent the rate of total dissociation of a micelle (192 see also Refs. 193-195). [Pg.483]

According to an elegant remark by Davies [5], "Modem scientific data handling is multitechnique, multisystem, and manufacturer-independent, with results being processed remotely from the measuring apparatus. Indeed, data exchange and storage are steps of the utmost importance in the data acquisition pathway. The simplest way to store data is to define some special format (i.e., collection of rules) of a flat file. Naturally, one cannot overestimate the importance of databases, which are the subject of Chapter 5 in this book. Below we discuss three simple, yet efficient, data formats. [Pg.209]

Trivial or trade namc.s can be stored and searched as character strings. Their use is the simplest and most intuitive way of storing chemical information. However, being not subject to strict rules, their formation does not reflect accurately the molecular composition. Hence, the structure of the searched compound cannot be derived from them. Thus, a name such as "Flexricin does not tell the user very much. Furthermore, many more than one trivial or trade name for a given compound usually exist. [Pg.293]

I lc. Ci ond reason why the ZDO approximation is not applied to all pairs of orbitals is that the major contributors to bond formation are the electron-core interactions between pairs of orbila l.s and the nuclear cores (i.e. These interachons are therefore not subjected to the ZDO approximation (and so do not suffer from any transformation problems). [Pg.109]

Under the usual conditions their ratio is kinetically controlled. Alder and Stein already discerned that there usually exists a preference for formation of the endo isomer (formulated as a tendency of maximum accumulation of unsaturation, the Alder-Stein rule). Indeed, there are only very few examples of Diels-Alder reactions where the exo isomer is the major product. The interactions underlying this behaviour have been subject of intensive research. Since the reactions leadirig to endo and exo product share the same initial state, the differences between the respective transition-state energies fully account for the observed selectivity. These differences are typically in the range of 10-15 kJ per mole. ... [Pg.6]

Chlorobenzenes activated by coordination of Cr(CO)3 react with terminal alkynes[253). The 1-bromo-1,2-alkadiene 346 reacts with a terminal alkyne to afford the alka-l,2-dien-4-yne 347[254], Enol tritlates are used for the coupling with terminal alkynes. Formation of 348 in the syntheses of ginkgolide[255] and of vitamin D are examples[256] Aryl and alkenyl fluorides are inert. Only bromide or iodide is attacked when the fluoroiodoalkene 349 or fluoroiodoar-ene is subjected to the Pd-catalyzed coupling with alkynes[257-259]. [Pg.176]

Enone formation-aromatization has been used for the synthesis of 7-hydro-xyalkavinone (716)[456]. The isotlavone 717 was prepared by the elimina-tion[457]. The unsaturated 5-keto allyl esters 718 and 719, obtained in two steps from myreene. were subjected to enone formation. The reaction can be carried out even at room temperature using dinitriles such as adiponitrile (720) or 1,6-dicyanohexane as a solvent and a weak ligand to give the pseudo-ionone isomers 721 and 722 without giving an allylated product(458]. [Pg.389]

Anilines react with ct-haloacetophenones to give 2-arylindoles. In a typical procedure an W-phenacylaniline is heated with a tw o-fold excess of the aniline hydrobromide to 200-250°C[1]. The mechanism of the reaction was the subject of considerable investigation in the 1940s[2]. A crucial aspect of the reaction seems to be the formation of an imine of the acetophenone which can isomerize to an aldimine intermediate. This intermediate apparently undergoes cyclization more rapidly (path bl -> b2) than its precursor (Scheme 7.3). Only with very reactive rings, e.g, 3,5-dimethoxyaniline, has the alternative cydiz-ation (path al a2) to a 3-arylindole been observed and then only under modified reaction conditions[3],... [Pg.77]

Arylthiazoles derivatives are good subjects for the study of these transfers. Thus the absorption wavelengths and the enthalpies of formation of a series of charge-transfer complexes of the type arylthiazole-TCNE, have been determined (147). The results are given in Table IIM3. [Pg.354]

In an extension of the work described m the preceding section Bender showed that basic ester hydrolysis was not concerted and like acid hydrolysis took place by way of a tetrahedral intermediate The nature of the experiment was the same and the results were similar to those observed m the acid catalyzed reaction Ethyl benzoate enriched m 0 at the carbonyl oxygen was subjected to hydrolysis m base and samples were isolated before saponification was complete The recovered ethyl benzoate was found to have lost a por tion of Its isotopic label consistent with the formation of a tetrahedral intermediate... [Pg.855]

The variant of the cylindrical model which has played a prominent part in the development of the subject is the ink-bottle , composed of a cylindrical pore closed one end and with a narrow neck at the other (Fig. 3.12(a)). The course of events is different according as the core radius r of the body is greater or less than twice the core radius r of the neck. Nucleation to give a hemispherical meniscus, can occur at the base B at the relative pressure p/p°)i = exp( —2K/r ) but a meniscus originating in the neck is necessarily cylindrical so that its formation would need the pressure (P/P°)n = exp(-K/r ). If now r /r, < 2, (p/p ), is lower than p/p°)n, so that condensation will commence at the base B and will All the whole pore, neck as well as body, at the relative pressure exp( —2K/r ). Evaporation from the full pore will commence from the hemispherical meniscus in the neck at the relative pressure p/p°) = cxp(-2K/r ) and will continue till the core of the body is also empty, since the pressure is already lower than the equilibrium value (p/p°)i) for evaporation from the body. Thus the adsorption branch of the loop leads to values of the core radius of the body, and the desorption branch to values of the core radius of the neck. [Pg.128]

These effects of differential vapor pressures on isotope ratios are important for gases and liquids at near-ambient temperatures. As temperature rises, the differences for volatile materials become less and less. However, diffusion processes are also important, and these increase in importance as temperature rises, particularly in rocks and similar natural materials. Minerals can exchange oxygen with the atmosphere, or rocks can affect each other by diffusion of ions from one type into another and vice versa. Such changes can be used to interpret the temperatures to which rocks have been subjected during or after their formation. [Pg.365]

The subject has been reviewed (37,38). Water may be added to the feed to suppress methyl acetate formation, but is probably not when operating on an industrial scale. Water increase methanol conversion, but it is involved in the unavoidable loss of carbon monoxide. A typical methanol carbonylation flow sheet is given in Figure 2. [Pg.68]

The analytical mechanisms for predicting the corresponding pollutant formation associated with fossil-fuel-fired furnaces lag the thermal performance prediction capabiUty by a fair margin. The most firmly estabUshed mechanism at this time is the prediction of thermal NO formation (24). The chemical kinetics of pollutant formation is, in fact, a subject of research. [Pg.147]

The mode of action has been a subject for research for a number of years. While it was originally thought that maleic hydrazide replaced uracil in the RNA sequence, it has been deterrnined that the molecule may be a pyrimidine or purine analogue and therefore base-pair formation is possible with uracil and thymine and there exists the probabiHty of base-pair formation with adenine however, if maleic hydrazide occurs in an in vivo system as the diketo species, then there remains the possibiHty of base-pairing with guanine (50). Whatever the mechanism, it is apparent that the inhibitory effects are the result of a shutdown of the de novo synthesis of protein. [Pg.425]


See other pages where Subject formation is mentioned: [Pg.118]    [Pg.118]    [Pg.19]    [Pg.181]    [Pg.228]    [Pg.118]    [Pg.118]    [Pg.19]    [Pg.181]    [Pg.228]    [Pg.340]    [Pg.1050]    [Pg.416]    [Pg.642]    [Pg.645]    [Pg.5]    [Pg.889]    [Pg.199]    [Pg.852]    [Pg.472]    [Pg.164]    [Pg.237]    [Pg.347]    [Pg.434]    [Pg.58]    [Pg.157]    [Pg.169]    [Pg.265]    [Pg.344]    [Pg.35]    [Pg.36]    [Pg.127]    [Pg.27]    [Pg.264]    [Pg.378]   
See also in sourсe #XX -- [ Pg.31 ]

See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.7 , Pg.10 , Pg.13 , Pg.14 , Pg.16 , Pg.17 , Pg.22 , Pg.53 , Pg.133 ]

See also in sourсe #XX -- [ Pg.3 ]

See also in sourсe #XX -- [ Pg.609 ]

See also in sourсe #XX -- [ Pg.609 ]

See also in sourсe #XX -- [ Pg.114 , Pg.115 ]

See also in sourсe #XX -- [ Pg.609 ]




SEARCH



1.3- dipole formation 4661 Subject

Coke formation Subject

Cumulative Subject formation

Five-membered ring formation Subject

SUBJECTS dimeric complex formation

Subject alkane formation

Subject allyl formate

Subject cyclic oligomers formation

Subject formation from

Subject isomer formation

Subject ketone formation

Subject network formation

Subject photocatalytic formation

Subject secondary formation

© 2024 chempedia.info