Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject ketone formation

Chemiluminescence.—The triplet potential-energy surface of dioxetan has been found to intersect the singlet surface between dioxetan and the transition state for dioxetan decomposition to formaldehyde. This provides support for the argument that the reason for efficient triplet ketone formation on thermolysis of dioxetans is because intersystem crossing is an integral part of the reaction.293 The decomposition mechanism of 1,2-dioxetans has been the subject of another theoretical investigation.294 ... [Pg.94]

By using various trapping reagents, it has been deduced that the transannular fragmentation is rapidly reversible. The cyclization of the fragmented radical C is less favorable, and it is trapped at rates which exceed that for recyclization under most circumstances. " Radicals derived from ethers and acetals by hydrogen abstraction are subject to fragmentation, with formation of a ketone or ester, respectively. [Pg.723]

The optical rotatory dispersion curves of steroidal ketones permit a distinction to be made between the conformations, and assignment of configuration is possible without resorting to chemical methods (see, e.g. ref. 36) which are often tedious. The axial halo ketone rule and, in the more general form, the octant rule summarize this principle and have revealed examples inconsistent with the theory of invariable axial attack in ketone bromination. 2-Methyl-3-ketones have been subjected to a particularly detailed analysis. There are a considerable number of examples where the products isolated from kinetically controlled brominations have the equatorial orientation. These results have been interpreted in terms of direct equatorial attack rather than initial formation of the axial boat form. [Pg.274]

Many aryhydrazones provide two or more isomers when subjected to the conditions of the Fischer indole cyclization. The product ratio and the direction of indolization can also be affected by different reaction conditions (i.e. catalysts and solvents), which is attributed, at least in part, to the relative stabilities of the two possible tautomeric ene-hydrazine intermediates. Generally, strongly acidic conditions favor formation of the least substituted ene-hydrazine, while cyclization carried out in weak acids favors the most substituted ene-hydrazine. Eaton s acid (10% P2O5 in MeSOsH) has been demonstrated to be an effective catalyst for the preparation of 3-unsubstituted indoles from methyl ketones under strongly acidic conditions. Many comprehensive reviews on this topic have appeared. ... [Pg.119]

The reaction of disubstituted diacetylenes with hydrazine hydrate was reported by Darbinyan et al. (70AKZ640). In the first stage the addition of hydrazine to the terminal carbon atom of the diacetylene system is analogous to that of primary amines to diacetylene (69ZC108 69ZC110). With monosubstituted diacetylenes (R = H), hydrazine adds to the terminal triple bond. This leads to the formation of vinylacetylenic hydrazine 22 which cyclizes to dihydropyrazole 23 subjected to further isomerization to the pyrazole 25. It is possible that hydrazine 22 undergoes hydration to the ketone 24 which can easily be cyclized to the pyrazole 25... [Pg.166]

Pure piperitone was subjected to the action of purified hydrogen, in the presence of a nickel catalyst, for six hours, the temperature ranging between 175° to 180° C. The double bond in piperitone was readily opened out with the formation of menthone, but further action of the hydrogen under these conditions did not reduce the carbonyl group, even after continued treatment for two days. Under correct conditions, however, the reduction to menthol should take place. The ease with which menthone is formed in this way is of special interest, not only in connection with the production of this ketone, but also as a stage in the manufacture of menthol. [Pg.240]

The diastereoselectivity of the reduction of a-substiluted ketones has been the subject of much investigation. The reagent combination of trifluoroacetic acid and dimethylphenylsilane is an effective method for the synthesis of erythro isomers of 2-amino alcohols, 1,2-diols, and 3-hydroxyalkanoic acid derivatives.86,87,276,375 Quite often the selectivity for formation of the erythro isomer over the threo isomer of a given pair is >99 1. Examples where high erythro preference is found in the products are shown below (Eqs. 218-220).276 Similar but complementary results are obtained with R3SiH/TBAF, where the threo isomer product... [Pg.78]

Palladium-catalyzed bis-silylation of methyl vinyl ketone proceeds in a 1,4-fashion, leading to the formation of a silyl enol ether (Equation (47)).121 1,4-Bis-silylation of a wide variety of enones bearing /3-substituents has become possible by the use of unsymmetrical disilanes, such as 1,1-dichloro-l-phenyltrimethyldisilane and 1,1,1-trichloro-trimethyldisilane (Scheme 28).129 The trimethylsilyl enol ethers obtained by the 1,4-bis-silylation are treated with methyllithium, generating lithium enolates, which in turn are reacted with electrophiles. The a-substituted-/3-silyl ketones, thus obtained, are subjected to Tamao oxidation conditions, leading to the formation of /3-hydroxy ketones. This 1,4-bis-silylation reaction has been extended to the asymmetric synthesis of optically active /3-hydroxy ketones (Scheme 29).130 The key to the success of the asymmetric bis-silylation is to use BINAP as the chiral ligand on palladium. Enantiomeric excesses ranging from 74% to 92% have been attained in the 1,4-bis-silylation. [Pg.745]

Oxidative attack on a carbon-hydrogen bond of an alkyl group a to a nitrogen atom is not restricted to saturated aliphatic amines. In fact X in an X-N-CH- structural subunit can be virtually any common atomic grouping that can be found in stable organic molecules. For example, w-carbon hydrogens of Aralkyl-substituted aromatic cyclic amines (119), aryl amines (120), amides (121), amidines (122), A-nitrosodialkylamines (123), etc. are all subject to oxidative attack, carbinolamine formation, and in most cases release of an aldehyde or ketone depending on the substitution pattern (1° or 2°)... [Pg.79]

Synthesis of a C(8)-C(18) segment of the larger fragment of lb using the same basic strategy is depicted in Scheme 25. Here, hydroxy ketone 176 was subjected to syn-selective (dr of crude product=90 10) reductive amination [42] with sodium cyanoborohydride and benzylamine followed by tetrahydro-oxazine formation using aqueous formaldehyde. The resulting heterocycle 182 was then converted to unsaturated ester 184 by successive desilylation, oxidation, and entirely (Z)-selective Horner-Wadsworth-Emmons olefination. Re-... [Pg.237]

Prior to imide formation, the imide-aryl ether ketimine copolymers were converted to the imide-aryl ether ketone analogue by hydrolysis of the ketimine moiety with para-toluene sulfonic acid hydrate (PTS) according to a literature procedure [51,52,57-59]. The copolymers were dissolved in NMP and heated to 50 °C and subjected to excess PTS for 8 h. The reaction mixtures were isolated in excess water and then rinsed with methanol and dried in a vacuum oven to afford the amic ester-aryl ether ether ketone copolymer, 2e (Scheme 8.)... [Pg.75]

Thus, ketone enolates easily substitute chlorine in position 2 of the electrophilic nucleus of pyrazine (1,4-diazabenzene), and even in the dark, the reaction proceeds via the Sj l mechanism (Carver et al. 1981). It is expected that the introduction of the second chlorine in the ortho position to 4-nitrogen in the electrophilic nucleus of pyrazine promotes the ion-radical pathway even more effectively. However, 2,6-dichloropyrazine in the dark or subjected to light reacts with the same nucleophiles by Sr.,2 and not S nI mechanism (Carver et al. 1983). The authors are of the opinion that two halogens in the pyrazine cycle facilitate the formation of a-complex to the extent that deha-logenation of anion-radicals in solution and a subsequent nucleophilic attack of free pyrazine radical become virtually impossible. Thus, the reaction may either involve or exclude the intermediate a-complex, and only special identification experiments can tell which is the true one. [Pg.223]


See other pages where Subject ketone formation is mentioned: [Pg.1750]    [Pg.247]    [Pg.889]    [Pg.157]    [Pg.124]    [Pg.297]    [Pg.95]    [Pg.159]    [Pg.167]    [Pg.119]    [Pg.150]    [Pg.382]    [Pg.650]    [Pg.661]    [Pg.764]    [Pg.61]    [Pg.56]    [Pg.878]    [Pg.889]    [Pg.319]    [Pg.410]    [Pg.520]    [Pg.146]    [Pg.412]    [Pg.215]    [Pg.726]    [Pg.1004]    [Pg.49]    [Pg.66]    [Pg.100]    [Pg.475]    [Pg.227]    [Pg.237]    [Pg.107]    [Pg.122]    [Pg.114]    [Pg.178]    [Pg.186]    [Pg.195]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Ketone 1558 Subject

Ketones formation

Subject formation

© 2024 chempedia.info