Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene-maleic anhydride-butyl

Attempts have been made over time to improve the physical properties of novolacs. The use of phenol formaldehyde resins prepared in alkaline medium in photoresist compositions is mentioned in a Kalle Co. AG patent. The use of polyvinyl ethers in combination with novolacs to impart stickiness and plasticization action to the latter was patented by Christensen. Steinhoff, Isaacson, and Roelants of the Shipley Company mention the use of vinyl ethers in a patent on roller coating. Lower alkyl polyvinyl ethers, such as methyl, ethyl, butyl, and isobutyl, are added to novolac resins to improve coating flexibility and adhesion to metal surfaces as well as to improve resistance to mildly alkaline solutions. The use of styrene, methyl styrene, and styrene-maleic anhydride copolymers in combination with novolac was mentioned in several patents of both Shipley and Kalle Co. AG. When novolac is copolymerized with maleic anhydride, a resin that is readily soluble in alkaline solutions is obtained. ... [Pg.304]

The composition and quantity of styrene-maleic anhydride (SMA) copolymer resins were varied in emulsion copolymerisation of methyl methacrylate and n-butyl acrylate conducted by both batch and semicontinuous processes. The resulting particle sizes and levels of coagulum were measured to determine the optimum conditions for incorporation of the SMA resins into the resulting latexes. A semicontinuous process, in which no buffer was included and the SMA was added in a second stage comonomer emulsion, was found to produce coagulum-free latexes. 13 refs. [Pg.100]

Blends of PE with styrene-maleic anhydride copolymer were coarse and weak. When t-V-butyl aminoethyl methacrylate was grafted onto the PE, it reacted with the maleic anhydride to form amide block copolymer at the interface, giving finer morphology, and higher tensile and impact strengths [179]. [Pg.616]

Material properties of polymers are determined by their chain miaostmctures. For polymers made from a single monomer type, the above-discussed molecular weight and distribution, chain stereoregularity, head-tail and trans-cis configurations, and so on all play important roles. For copolymers that contain multiple monomer types, chain composition, sequence, as well as their distributions, are added to the important microstmc-ture property list. With these new parameters, almost unlimited number of polymer types can be produced for better balance of properties for commercial applications. Outstanding commercial examples include acrylonittile-butadiene-styrene (ABS), SBS, Acrylan (acrylonittile-vinyl acetate), styrene-butadiene (SBR), butyl mbber (isobutylene-isoprene), Vinylite (vinyl chloride-vinyl acetate), and styrene-maleic anhydride (SMA). [Pg.811]

Dimethyl peroxide Diethyl peroxide Di-t-butyl-di-peroxyphthalate Difuroyl peroxide Dibenzoyl peroxide Dimeric ethylidene peroxide Dimeric acetone peroxide Dimeric cyclohexanone peroxide Diozonide of phorone Dimethyl ketone peroxide Ethyl hydroperoxide Ethylene ozonide Hydroxymethyl methyl peroxide Hydroxymethyl hydroperoxide 1-Hydroxyethyl ethyl peroxide 1 -Hydroperoxy-1 -acetoxycyclodecan-6-one Isopropyl percarbonate Isopropyl hydroperoxide Methyl ethyl ketone peroxide Methyl hydroperoxide Methyl ethyl peroxide Monoperoxy succinic acid Nonanoyl peroxide (75% hydrocarbon solution) 1-Naphthoyl peroxide Oxalic acid ester of t-butyl hydroperoxide Ozonide of maleic anhydride Phenylhydrazone hydroperoxide Polymeric butadiene peroxide Polymeric isoprene peroxide Polymeric dimethylbutadiene peroxide Polymeric peroxides of methacrylic acid esters and styrene... [Pg.163]

Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]... Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]...
A range of reactions of 2-chlorocyclohexyl(dichloro)phosphine (60) with alcohols and epoxides has been described, largely with a view to the synthesis of polymer intermediates and flame-retardants.50 The copolymerization of dichloro(phenyl)-phosphine with styrene and vinyl butyl ether in the presence of maleic anhydride has been studied.61... [Pg.59]

Other commercial copolymers which are typically random are those of vinyl chloride and vinyl acetate (Vinylite), isobutylene and isoprene (butyl rubber), styrene and butadiene (SBR), and acrylonitrile and butadiene (NBR). The accepted nomenclature is illustrated by EP, which is designated poly-ethylene-co-propylene the co designating that the polymer is a copolymer. When the copolymers are arranged in a regular sequence in the chains, i.e., ABAB, the copolymer is called an alternating copolymer. A copolymer consisting of styrene and maleic anhydride (SMA) is a typical alternating copolymer. [Pg.10]

The polymer microstructure based on triad intensities in pyrolysates has been evaluated for poly(styrene-co-butyl acrylate), poly(styrene-co-methyl methacrylate), poly(vinyl chloride-co-vinylidene chloride), poly(styrene-co-maleic anhydride), and for chlorinated polyethylene considered as a copolymer of polyethylene and vinyl chloride [30]. [Pg.167]

The distinction suggested by the terms "reactive mononer and "unreactive monomer is not supported by the results obtained in the homopolymerization of styrene and of maleic anhydride (MAH) in the presence of a peroxyester undergoing rapid decomposition. Thus, the addition of 0.5 mmole di-sec-butyl peroxydicarbonate (t.. 1.3 hr) in 4 portions at 2 min intervals (total reaction... [Pg.451]

Consider the copolymerization of 1,3-butadiene with the following monomers n-butyl vinyl ether, methyl methacrylate, methyl acrylate, styrene, vinyl acetate, acrylonitrile, maleic anhydride. If the copolymerizations were carried out using cationic initiation, what would be expected qualitatively for the copolymer compositions List the copolymers in order of their increasing butadiene content. Would copolymers be formed from each of the comonomer pairs Explain what would be observed if one used anionic initiation ... [Pg.740]

Desulfurization of petroleum feedstock (FBR), catalytic cracking (MBR or FI BR), hydrodewaxing (FBR), steam reforming of methane or naphtha (FBR), water-gas shift (CO conversion) reaction (FBR-A), ammonia synthesis (FBR-A), methanol from synthesis gas (FBR), oxidation of sulfur dioxide (FBR-A), isomerization of xylenes (FBR-A), catalytic reforming of naphtha (FBR-A), reduction of nitrobenzene to aniline (FBR), butadiene from n-butanes (FBR-A), ethylbenzene by alkylation of benzene (FBR), dehydrogenation of ethylbenzene to styrene (FBR), methyl ethyl ketone from sec-butyl alcohol (by dehydrogenation) (FBR), formaldehyde from methanol (FBR), disproportionation of toluene (FBR-A), dehydration of ethanol (FBR-A), dimethylaniline from aniline and methanol (FBR), vinyl chloride from acetone (FBR), vinyl acetate from acetylene and acetic acid (FBR), phosgene from carbon monoxide (FBR), dichloroethane by oxichlorination of ethylene (FBR), oxidation of ethylene to ethylene oxide (FBR), oxidation of benzene to maleic anhydride (FBR), oxidation of toluene to benzaldehyde (FBR), phthalic anhydride from o-xylene (FBR), furane from butadiene (FBR), acrylonitrile by ammoxidation of propylene (FI BR)... [Pg.754]

Monomers 4VP, 4-vinylpyridine NIPAAm, jV-isopropylacrylamidc AA, acrylic acid PEGMA, poly (ethylene glycol) methacrylate SPE, MAI-dimethyl-AW2-methacryloyloxycthyl-/V-0-sulfopropyl)amm<>-nium betaine AMPS, 2-acrylamido-2-methyl-l-propanesulfonic acid qDMAEMA, quaternary 2-dimethylaminoethyl methacrylate St, styrene HEMA, 2-hydroxyethyl methacrylate HEA, 2-hydro-xyethyl acrylate DMAEMA, 2-dimethylaminoethyl methacrylate MAA, methacrylicacid NaSS sodium p-styrene sulfonate AC, [(2-acryloyloxy)ethyl]trimethyl ammonium chloride GMA, glycidyl methacrylate NVP, jV-vinylpyrrolidone MAn, maleic anhydride BVE n-butyl vinyl ether AAm, acrylamide DEAAm, MA-diethylacrylamidc DMAAm, MA -dimethylacrylamidc MMA, methyl methacrylate. [Pg.532]

Ethylene-co-butyl acrylate-g-maleic anhydride Styrene-co-ethylene-co-butadiene-co-styrene-g-glycidyl methacrylate... [Pg.15]

Glycidyl methacrylate copolymers Ethylene/butyl acrylate/maleic anhydride copolymers Styrene/ethylene-butylene/styrene block copolymer Poly(amide) (PA), MgO Silicone rubber and aminosilane Liquid crystalline polymers Improved impact strength Improved impact strength" Improved impact strength Improved electrical properties, in glass fiber applications" Improved mechanical properties" Viscosity reduction" ... [Pg.184]

Linseed oil fatty amides were reacted with melamine or tartaric acid to obtain melamine or tartaric acid-modified poly (ester amide). This was cured at room temperature by poly(styrene co-maleic anhydride) or butyl-ated melamine formaldehyde in different weight percentages (30-80%) to obtain a highly thermostable surface coating material. Similarly, piperazine-modified fatty amide was prepared from A,A-bis(2-hydroxyethyl) linseed oil fatty amide and piperazine by condensation polymerisation. The poly(ester amide) resin was cured with butylated melamine-formaldehyde... [Pg.132]

Medyakova, L. V., Rzaev, Z. M. O., Giiner, A., and Kibarer, G. 2000. Gomplex-radical terpolymerization of acceptor-donor-acceptor systems Maleic anhydride (u-butyl methaciylate)-styrene-acrylonitrile. Journal of Polymer Science, Part A Polymer Chemistry 38 2652-2662. [Pg.114]


See other pages where Styrene-maleic anhydride-butyl is mentioned: [Pg.64]    [Pg.64]    [Pg.210]    [Pg.210]    [Pg.343]    [Pg.286]    [Pg.220]    [Pg.593]    [Pg.226]    [Pg.184]    [Pg.643]    [Pg.42]    [Pg.396]    [Pg.304]    [Pg.188]    [Pg.718]    [Pg.396]    [Pg.310]    [Pg.122]    [Pg.354]    [Pg.11]    [Pg.164]    [Pg.10]    [Pg.396]    [Pg.358]    [Pg.360]    [Pg.528]    [Pg.134]    [Pg.218]   


SEARCH



Anhydrides maleic anhydride

Maleic anhydride

STYRENE-MALEIC

Styrene-maleic anhydride

Styrene-maleic anhydride-butyl copolymer

© 2024 chempedia.info