Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure water distribution

Five minutes later, a well-structured water distribution becomes apparent in the OCT image of the flax seed. The upper bright layer is separated by a darker layer from a highly scattering area (about 50 pm). The darker layer has a thickness of (about 40 pm). Below there is a water absorption area... [Pg.100]

Surface evaporation can be a limiting factor in the manufacture of many types of products. In the drying of paper, chrome leather, certain types of synthetic rubbers and similar materials, the sheets possess a finely fibrous structure which distributes the moisture through them by capillary action, thus securing very rapid diffusion of moisture from one point of the sheet to another. This means that it is almost impossible to remove moisture from the surface of the sheet without having it immediately replaced by capillary diffusion from the interior. The drying of sheetlike materials is essentially a process of surface evaporation. Note that with porous materials, evaporation may occur within the solid. In a porous material that is characterized by pores of diverse sizes, the movement of water may be controlled by capillarity, and not by concentration gradients. [Pg.131]

It is well known that the melting point of water confined to small pores is depressed [30, 31]. Therefore in concrete as the temperature decreases, the amount of frozen water will increase. Under normal temperature variation not all water in the pore structure will be frozen. The change from water in the liquid form to solid ice drastically reduces the Tfk of hydrogen (T2 ice <9 ps [32]). Ice will not be observed in an image, even with the SPRITE techniques, and our experimental images will be maps of unfrozen water distribution. [Pg.295]

One of the key parameters for correlating molecular structure and chemical properties with bioavailability has been transcorneal flux or, alternatively, the corneal permeability coefficient. The epithelium has been modeled as a lipid barrier (possibly with a limited number of aqueous pores that, for this physical model, serve as the equivalent of the extracellular space in a more physiological description) and the stroma as an aqueous barrier (Fig. 11). The endothelium is very thin and porous compared with the epithelium [189] and often has been ignored in the analysis, although mathematically it can be included as part of the lipid barrier. Diffusion through bilayer membranes of various structures has been modeled for some time [202] and adapted to ophthalmic applications more recently [203,204]. For a series of molecules of similar size, it was shown that the permeability increases with octa-nol/water distribution (or partition) coefficient until a plateau is reached. Modeling of this type of data has led to the earlier statement that drugs need to be both... [Pg.441]

In food chemistry, the water distribution and its interaction with polymeric structures plays a fundamental role as it determines important food quality parameters. low resolution NMR proved to be an... [Pg.188]

Although traditional octanol/water distribution coefficients are still widely used in quantitative structure-activity relationships (QSAR) and in ADME/ pharmacokinetic (PK) studies, alternatives have been proposed. To cover the variability in biophysical characteristics of different membrane types, a set of four solvents has been suggested - sometimes called the critical quartet [49-51], The 1,2-dichloroethane (DCE)/water system has been promoted as a good alternative to alkane/water due to its far better dissolution properties [50, 51], but it may be used only rarely due to its carcinogenic properties. [Pg.8]

Bertram H C, Purslow P P and Andersen H J (2002), Relationship between meat structure, water mobility and distribution - A Low-Field NMR study , J Agric Food Chem, 50,... [Pg.170]

A poorly balanced water distribution in the fuel cell can severely impair its performance and cause long-term effects due to structural degradation. If PEMs or CLs are too dry, proton conductivity will be poor, potentially leading to excessive joule heating, which could affect the structural integrity of the cell. Too much water in diffusion media (CLs and GDLs) blocks the gaseous supply of reactants. As these examples show, all processes in PEECs are linked to water distribution and the balance of water fluxes. [Pg.351]

As much as the nanophase segregated morphology of Nafion has been a controversial issue in the literature over several decades, the need for understanding the structure and distribution of wafer in PEMs has sfimulafed many efforfs in experimenf and theory. Major classifications of water in PEMs distinguish (1) surface and bulk wafer, (2) nonfreezable, freezable-bound, and free wafep and (3) wafer vapor or liquid water. Anofher fype of wafer offen discussed is that associated with hydrophobic regions. [Pg.369]

In reality, this behavior is only observed in the limit of small jg. At currents o 1 A cm-2 that are relevant for fuel cell operation, the electro-osmotic coupling between proton and water fluxes causes nonuniform water distributions in PEMs, which lead to nonlinear effects in r/p M- These deviations result in a critical current density, p at which the increase in r/pp j causes the cell voltage to decrease dramatically. It is thus crucial to develop membrane models that can predicton the basis of experimental data on structure and transport properties. [Pg.397]

The physical mechanism of membrane water balance and the formal structure of modeling approaches are straightforward. Under stationary operation, the inevitable electro-osmotic flux has to be compensated by a back flux of water from cathode to anode, driven by gradients in concentration, activity, or liquid pressure of water. The water distribution in PEMs that is generated in response to these driving forces decreases from cathode to anode. With increasing/o, the water distribution becomes more nonuniform. the water content near the anode falls below the percolation threshold of proton conduction, X < X. This leaves only a small conductivity due to surface transport of water. As a consequence, increases dramatically this can lead to failure of the complete cell. [Pg.397]

An external gas pressure gradient applied between anode and cathode sides of the fuel cell may be superimposed on the internal gradient in liquid pressure. This provides a means to control the water distribution in PEMs under fuel cell operation. This picture forms the basis for the hydraulic permeation model of membrane operation that has been proposed by Eikerling et al. This basic structural approach can be rationalized on the basis of the cluster network model. It can also be adapted to include the pertinent structural pictures of Gebel et and Schmidt-Rohr et al. ... [Pg.398]

As shown in Figure 5, the diffusion media are the porous backings between the catalyst layers and the gas channels. They provide structural support, distribute the reactant gases, and provide a pathway for electrons, gases, and liquid water to move to or from the catalyst layers. The diffusion media are... [Pg.456]

Less frequently used at present is electron spin resonance spectroscopy, which is based on the use of spin probes as model componnds or covalent spin labeling of drugs. Microviscosity and micropolarity of the molecnlar environment of the probe can be derived from electron spin resonance spectra. Moreover, the spectra allow us to differentiate isotropic and anisotropic movements, which result from the incorporation of the probe into liposomal structures. Quantitative distribution of the spin probes between the internal lipid layer, the snrfactant, and the external water phase is to be determined noninvasively. On the basis of the chemical degradation of drugs released from the lipid compartment, agents with reductive features (e.g., ascorbic acid) allow us to measure the exchange rate of the drugs between lipophilic compartments and the water phase [27,28]. [Pg.7]

Spheres, spheroids, and horizontal pressure vessels should be actively protected with cooling water at an application rate shown in Table 8-13 over the entire tank surface including the structural supports and the underside of the tank, including leg area. Adequate coverage should also be provided for the ends of horizontal vessels. This may be accomplished by a water spray, water distribution weirs, monitors or combination of all three. Monitor nozzles and manual hose streams should be provided to supplement the fixed water spray fire protection on the vessel. [Pg.295]

The project plan should encompass all aspects of a fire protection system, such as the underground fire water distribution system, fire pumps, aboveground water header, valving and standpipes, structural support, and detection and alarm systems. All work on the fire protection system must be coordinated with other work activities at the site or in the operating unit. The recommended installation practices for the different types of fire protection systems are covered in consensus standards, such as NFPA. The installation process is illustrated in Figure 9-1. [Pg.327]

Sorption of pharmaceuticals onto the surface of particulate matter or their distribution between two phases (water and either sludge, sediment or soil) depends on many factors, the most important being liquid phase pH and redox potential, the stereochemical structure and chemical nature of both the pharmaceutical compound and the sorbent, the lipophilicity of the sorbed molecules (excellent sorption at log Kov > 4, low sorption at log < 2.4), the sludge-water distribution coefficient Kd Kd > 2 L g SS good sorption, < 0.3 L g SS low sorption), the extent of neutral and ioiuc species present in the wastewater and the characteristics of the suspended particles. Moreover, the presence of humic and fulvic substances may alter the surface properties of the sludge, as well as the number of sites available for sorption and reactions, thereby enhancing or suppressing sorption of PhCs [38, 55, 61]. [Pg.150]

In all of these cases, the structure of the organic sorbate, the composition of the surface, and the conditions of the vapor or solution exchanging with the solid must be considered. However, it is important to note that with some experience in thinking about the organic chemicals and environmental situation involved, we can usually anticipate which one or two sorption mechanisms will predominate. For example, in Chapter 9 we wrote an expression reflecting several simultaneously active sorption mechanisms, each with their own equilibrium descriptor, to estimate an overall solid-water distribution coefficient for cases of interest (Eq. 9-16) ... [Pg.389]

The computational approach couples the two-phase LB model for the liquid water transport and the DNS model for the species and charge transport for the CL.25-27,68 The two-phase simulation using the LB model is designed based on the ex-situ, steady-state flow experiment for porous media, detailed earlier in the section 4.3, in order to obtain the liquid water distributions within the CL microstructure for different saturation levels resulting from the dynamic interactions between the two phases and the underlying pore morphology. The details of the simulation setup are provided in our work.27,61 62 Once steady state is achieved, 3-D liquid water distributions can be obtained within the CL, as shown in Fig. 13. From the liquid water distributions within the CL structure, the information about the catalytic site coverage effect can be extracted directly. [Pg.294]

Similarly, with the 3-D liquid water distribution in the GDL micro structure available from the two-phase LB model and representatively shown in Fig. 15, the DNS model25,27 can be applied to solve the Laplace equation for oxygen transport given below.68... [Pg.297]

The existing MD interface structure models can involve polymer clusters and a catalyst slab with thousands of atoms. These models, however, do not establish a correct EDL structure and electrode potential. Notable finding is that the presence of polymer alters the transport and adsorption oxygen at the interface and water distribution on the catalyst surface. [Pg.374]


See other pages where Structure water distribution is mentioned: [Pg.151]    [Pg.351]    [Pg.3]    [Pg.95]    [Pg.306]    [Pg.414]    [Pg.276]    [Pg.158]    [Pg.166]    [Pg.168]    [Pg.191]    [Pg.296]    [Pg.403]    [Pg.104]    [Pg.22]    [Pg.17]    [Pg.409]    [Pg.477]    [Pg.299]    [Pg.91]    [Pg.161]    [Pg.138]    [Pg.228]    [Pg.278]    [Pg.281]    [Pg.282]    [Pg.286]    [Pg.364]    [Pg.375]   
See also in sourсe #XX -- [ Pg.177 ]




SEARCH



Structural distributions

Structural water

Structured water

Water distribution

Water structuring

Water, structure

© 2024 chempedia.info