Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipophilic between

Of particular interest when considering ionizable compounds is the difference of lipophilicity between the neutral species and one of its ionic forms, because ionization dramatically alters intramolecular interactions (such as electronic conjugation, internal ionic and hydrogen bonds, polarity, hydrophilic folding, and shielding). In a given solvent system, diff (log is approximately constant for compounds with similar chemical... [Pg.752]

Based on the study of Sugano et al. (2000) and our predictive VolSurf model for this series, it can be concluded that factors like size and shape previously reported to affect paracellular permeability are indeed important to explain the local structure-permeability relationship of this chemotype. Usually, permeability via paracellular aqueous pore diffusion depends on the size of the solute and its diffusion coefficient in water. Another important factor is lipophilicity. Between intestinal absorption and both volume and lipophilicity, a negative correlation was reported for this series of thrombin inhibitors. In addition, hydrogen bonding properties and dipolarity are factors that determine... [Pg.432]

Although each steroid has an inherent water or lipid solubility, this characteristic can be altered by chemical modification of the steroid base into various derivatives. Acetate and alcohol derivatives of the base compound render the steroid molecule more lipophilic or fat soluble. Salts, such as sodium phosphate and hydrochloride, are relatively more hydrophilic or water soluble. The alcohol derivative has intermediate lipophilicity between acetates and salts such as the phosphates. [Pg.222]

Parent substances and metaboHtes may be stored in tissues, such as fat, from which they continue to be released following cessation of exposure to the parent material. In this way, potentially toxic levels of a material or metaboHte may be maintained in the body. However, the relationship between uptake and release, and the quantitative aspects of partitioning, may be complex and vary between different materials. For example, volatile lipophilic materials are generally more rapidly cleared than nonvolatile substances, and the half-Hves may differ by orders of magnitude. This is exemplified by comparing halothane and DDT (see Anesthetics Insectcontholtechnology). [Pg.231]

Catalyst Cation. The logarithms of extraction constants for symmetrical tetra- -alkylammonium salts (log rise by ca 0.54 per added C atom. Although absolute numerical values for extraction coefficients are vastly different in various solvents and for various anions, this relation holds as a first approximation for most solvent—water combinations tested and for many anions. It is important to note, however, that the lipophilicity of phenyl and benzyl groups carrying ammonium salts is much lower than the number of C atoms might suggest. Benzyl is extracted between / -propyl and -butyl. The extraction constants of tetra- -butylammonium salts are about 140 times larger than the constants for tetra- -propylammonium salts of the same anion in the same solvent—water system. [Pg.187]

Early examples of enantioselective extractions are the resolution of a-aminoalco-hol salts, such as norephedrine, with lipophilic anions (hexafluorophosphate ion) [184-186] by partition between aqueous and lipophilic phases containing esters of tartaric acid [184-188]. Alkyl derivatives of proline and hydroxyproline with cupric ions showed chiral discrimination abilities for the resolution of neutral amino acid enantiomers in n-butanol/water systems [121, 178, 189-192]. On the other hand, chiral crown ethers are classical selectors utilized for enantioseparations, due to their interesting recognition abilities [171, 178]. However, the large number of steps often required for their synthesis [182] and, consequently, their cost as well as their limited loadability makes them not very suitable for preparative purposes. Examples of ligand-exchange [193] or anion-exchange selectors [183] able to discriminate amino acid derivatives have also been described. [Pg.16]

Proteins (BSA or ovomucoid, OVM) have also been successful in the preparative resolution of enantiomers by liquid-liquid extraction, either between aqueous and lipophilic phases [181] or in aqueous two-phase systems (ATPS) [123, 180]. The resolution of d,l-kynurenine [180] and ofloxacin and carvediol [123] were performed using a countercurrent extraction process with eight separatory funnels. The significant number of stages needed for these complete resolutions in the mentioned references and others [123, 180, 189], can be overcome with more efficient techniques. Thus, the resolution of d,l-kynurenine performed by Sellergren et al. in 1988 by extraction experiments was improved with CCC technologies 10 years later [128]. [Pg.16]

It is important to make the distinction between the multiphasic catalysis concept and transfer-assisted organometallic reactions or phase-transfer catalysis (PTC). In this latter approach, a catalytic amount of quaternary ammonium salt [Q] [X] is present in an aqueous phase. The catalyst s lipophilic cation [Q] transports the reactant s anion [Y] to the organic phase, as an ion-pair, and the chemical reaction occurs in the organic phase of the two-phase organic/aqueous mixture [2]. [Pg.258]

Figure 5a indicates the effect of the CTAB concentration on the rate constants of the complexes of 38b and 38c. In the case of the water soluble 38b ligand, the rate increases with increasing CTAB concentration up to a saturation level. This type of saturation kinetics is usually interpreted to show the incorporation of a ligand-metal ion complex into a micellar phase from a bulk aqueous phase, and the catalytic activity of the complex is higher in the micellar phase than in the aqueous phase. In the case of lipophilic 38c, a very similar curve as in Fig. 4 is obtained. At a first glance, there appears to be a big difference between these two curves. However, they are rather common in micellar reactions and obey the same reaction mechanism 27). [Pg.158]

Iodine is a less suitable reagent for use on moderately polar phases and RP materials. The chemical modification of the silica gel that such layers have undergone makes them considerably more lipophilic, so that the contrast between substance-coated chromatogram zone and substance-free background is not very strong. The same applies to polyamide layers. [Pg.146]

The for the substrate UTP has been measured and does not show significant differences between wt and mutant enzymes. The model shows that the space available to substituents in positions 4 and 5 of the thiophene is limited, in agreement with SAR studies. Interaction with a number of basic and lipophilic residues bound... [Pg.36]


See other pages where Lipophilic between is mentioned: [Pg.750]    [Pg.751]    [Pg.753]    [Pg.754]    [Pg.755]    [Pg.636]    [Pg.226]    [Pg.750]    [Pg.751]    [Pg.753]    [Pg.754]    [Pg.755]    [Pg.636]    [Pg.226]    [Pg.682]    [Pg.682]    [Pg.685]    [Pg.729]    [Pg.171]    [Pg.220]    [Pg.132]    [Pg.537]    [Pg.224]    [Pg.50]    [Pg.218]    [Pg.119]    [Pg.21]    [Pg.195]    [Pg.259]    [Pg.38]    [Pg.50]    [Pg.56]    [Pg.160]    [Pg.172]    [Pg.232]    [Pg.164]    [Pg.186]    [Pg.56]    [Pg.99]    [Pg.105]    [Pg.379]    [Pg.155]    [Pg.523]    [Pg.125]    [Pg.36]    [Pg.128]    [Pg.130]   


SEARCH



Correlation between total lipophilicity

Relationship between Ionization and Lipophilicity

Relationships between lipophilicity

Relationships between lipophilicity modes

© 2024 chempedia.info