Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure supported transition metal catalysts

Besides supported (transition) metal catalysts, structure sensitivity can also be observed with bare (oxidic) support materials, too. In 2003, Hinrichsen et al. [39] investigated methanol synthesis at 30 bar and 300 °C over differently prepared zinc oxides, namely by precipitation, coprecipitation with alumina, and thermolysis of zinc siloxide precursor. Particle sizes, as determined by N2 physisorpt-ion and XRD, varied from 261 nm for a commercial material to 7.0 nm for the thermolytically obtained material. Plotting the areal rates against BET surface areas (Figure 3) reveals enhanced activity for the low surface area zinc... [Pg.169]

There has been considerable work in the literature on the structure of very small particles and clusters. Interest in this field has been primarily due to Ino s (1966) early experimental studies of normally fee metals prepared by vapour condensation which showed that a sizable portion of the particles exhibited non-crystallographic structures. These non-crystallographic atomic clusters or polycrystalline nuclei have been observed to consist of pentagonal bi-pyramid or icosahedra form of twinned structures and are known as multiply twinned particles (MTPs). EM studies of supported transition metal catalyst systems have indicated that MTPs sinter faster in catalytic reactions leading to the loss of surface area and are not beneficial to catalysis (Gai 1992). We describe the structure and the role of MTPs in catalysis in the following sections. [Pg.171]

Metal clusters in zeolites an intriguing class of catalysts Zeolite-supported transition metal catalysts Stoichiometric and catalytic reactivity of organometallic fragments supported on inorganic oxides Silver clusters and chemistry in zeolites Structure and reactivity of surface species obtained by interaction of organometallic compounds with oxidic surfaces infra-red studies... [Pg.1749]

There are reports of numerous examples of dendritic transition metal catalysts incorporating various dendritic backbones functionalized at various locations. Dendritic effects in catalysis include increased or decreased activity, selectivity, and stability. It is clear from the contributions of many research groups that dendrimers are suitable supports for recyclable transition metal catalysts. Separation and/or recycle of the catalysts are possible with these functionalized dendrimers for example, separation results from precipitation of the dendrimer from the product liquid two-phase catalysis allows separation and recycle of the catalyst when the products and catalyst are concentrated in two immiscible liquid phases and immobilization of the dendrimer in an insoluble support (such as crosslinked polystyrene or silica) allows use of a fixed-bed reactor holding the catalyst and excluding it from the product stream. Furthermore, the large size and the globular structure of the dendrimers enable efficient separation by nanofiltration techniques. Nanofiltration can be performed either batch wise or in a continuous-flow membrane reactor (CFMR). [Pg.146]

Work with supported ionic liquids was extended to a cationic polymer, poly (diallyldimethylammonium chloride), which has quaternary ammonium functional groups (Fig. 16) 268). The extra-structural counter anion is Cl . The polymer was applied to simultaneously incorporate an ionic liquid and a transition-metal catalyst via a simple mixing of the components. Wilkinson s catalyst and [BMIM]PF6 were... [Pg.222]

Nickel and other transition metal catalysts, when modified with a chiral compound such as (R,R)-tartaric acid 5S), become enantioselective. All attempts to modify solid surfaces with optically active substances have so far resulted in catalysts of only low stereoselectivity. This is due to the fact that too many active centers of different structures are present on the surface of the catalysts. Consequently, in asymmetric hydrogenations the technique of homogeneous catalysis is superior to heterogeneous catalysis56). However, some carbonyl compounds have been hydrogenated in the presence of tartaric-acid-supported nickel catalysts in up to 92% optical purity55 . [Pg.174]

The first Raman spectra of bulk metal oxide catalysts were reported in 1971 by Leroy et al. (1971), who characterized the mixed metal oxide Fe2(MoC>4)3. In subsequent years, the Raman spectra of numerous pure and mixed bulk metal oxides were reported a summary in chronological order can be found in the 2002 review by Wachs (Wachs, 2002). Bulk metal oxide phases are readily observed by Raman spectroscopy, in both the unsupported and supported forms. Investigations of the effects of moisture on the molecular structures of supported transition metal oxides have provided insights into the structural dynamics of these catalysts. It is important to know the molecular states of a catalyst as they depend on the conditions, such as the reactive environment. [Pg.72]

Abstract Metathesis-based polymerizations of 1-alkynes and cyclopolymerizations of 1,6-heptadiynes using late transition metal catalysts are reviewed. Results obtained with both binary, ternary, and quaternary catalytic systems and well-defined molybdenum- and ruthenium-based catalysts are presented. Special consideration is given to advancements in catalyst design and mechanistic understanding that have been made in this area over the last few years advancements that have facilitated tailor-made syntheses of poly(ene)s. In addition, the first supported ruthenium-based cyclopolymerization-active systems are summarized. Finally, selected structure-dependent properties will be outlined where applicable. [Pg.89]

Another way to change concentration of active material is to modify the catalyst loading on an inert support. For example, the number of supported transition metal particles on a microporous support like alumina or silica can easily be varied during catalyst preparation. As discussed in the previous chapter, selective chemisorption of small molecules like dihydrogen, dioxygen, or carbon monoxide can be used to measure the fraction of exposed metal atoms, or dispersion. If the turnover frequency is independent of metal loading on catalysts with identical metal dispersion, then the observed rate is free of artifacts from transport limitations. The metal particles on the support need to be the same size on the different catalysts to ensure that any observed differences in rate are attributable to transport phenomena instead of structure sensitivity of the reaction. [Pg.230]

Polymer-supported benzenesulfonyl azides have been developed as a safe diazotransfer reagent. ° These compounds, including CH2N2 and other diazoalkanes, react with metals or metal salts (copper, paUadium, and rhodium are most commonly used) to give the carbene complexes that add CRR to double bonds. Diazoketones and diazoesters with alkenes to give the cyclopropane derivative, usually with a transition-metal catalyst, such as a copper complex. The ruthenium catalyst reaction of diazoesters with an alkyne give a cyclopropene. An X-ray structure of an osmium catalyst intermediate has been determined. Electron-rich alkenes react faster than simple alkenes. ... [Pg.1237]

Little is known about the chemical nature of the recently isolated carbon clusters (C o> C70, Cg4, and so forth). One potential application of these materials is as highly dispersed supports for metal catalysts, and therefore the question of how metal atoms bind to C40 is of interest. Reaction of C o with organometallic ruthenium and platinum re nts has shown that metals can be attached directly to the carbon framework. Ihe native geometry of transition metal, and an x-ray difi action analysis of the platinum complex [(CgHg)3P]2Pt( () -C6o) C4HgO revealed a structure similar to that known for [(C4Hs)3P]2Pt( n -ethylene). The reactivity of C40 is not like that of relatively electron-rich planar aromatic molecules su( as benzene. The carbon-carbon double bonds of C40 react like those of very electron-deficient arenes and alkcnes. [Pg.195]

Transition metal catalysts, specifically those composed of iron nanoparticles, are widely employed in industrial chemical production and pollution abatement applications [67], Iron also plays a cracial role in many important biological processes. Iron oxides are economical alternatives to more costly catalysts and show activity for the oxidation of methane [68], conversion of carbon monoxide to carbon dioxide [58], and the transformation of various hydrocarbons [69,70]. In addition, iron oxides have good catalytic lifetimes and are resistant to high concentrations of moisture and CO which often poison other catalysts [71]. Li et al. have observed that nanosized iron oxides are highly active for CO oxidation at low tanperatures [58]. Iron is unique and more active than other catalyst and support materials because it is easily reduced and provides a large number of potential active sites because of its highly disordered and defect rich structure [72, 73]. Previous gas-phase smdies of cationic iron clusters have included determination of the thermochemistry and bond energies of iron cluster oxides and iron carbonyl complexes by Armentrout and co-workers [74, 75], and a classification of the dissociation patterns of small iron oxide cluster cations by Schwarz et al. [76]. [Pg.303]

The distributions of cis and trans structures in the array of products are subject to wide variations that are characteristic of each of the transition metal catalysts. The nature of the catalyst support is of minor concern as long as the support is not an active catalyst in its own right. A single sequence of reaction steps common to all transition metals is envisaged. Product variability is associated with significant differences in the relative rates of successive steps in the reaction path. Productcontrolling steps may occur early or late. [Pg.107]

Structured supported ionic liquid-phase (SSILP) catalysis is a new concept that combines the advantages of ionic liquids (ILs) as solvents for homogeneous catalysts with the benefits of structured solid catalysts. In an attempt to prepare a homogeneous IL film on a microstructured support, SMFs were coated by a layer of carbon nanofibers as described above. An IL thin film was then immobilized on the CNF/SMF support. The high interfacial area of the IL film enabled the efficient use of a transition metal catalyst for the selective gas-phase hydrogenation of acetylenic compounds [267,268]. [Pg.103]

Structures of Organolithium Compounds, 3, 365 Supported Transition Metal Complexes as Catalysts, 15, 189 Transition Metal-Carborane Complexes, 8, 87 Transition Metal-lsocyanide Complexes, 11, 21... [Pg.362]

Given the structural diversity of the ligands that can be attached to polyethylene oligomers, it is not surprising that there is a similar diversity in the sorts of catalysts that have been supported on these materials. Selected examples of catalysts prepared using polyethylene ligands are shown in structures 14-26 in Fig. 4 [32-34,38-40,45-49]. While most of these catalysts contain transition metals, non-transition metal catalysts like poly-ethyldibutyltin chloride 14 or phase-transfer onium catalysts like 24 have also been prepared. [Pg.120]

Intentional doping with alkali metal ions is widely used to reduce the activity of alumina in supported catalysts. It has also been shown that doping with cations of alkali metals, alkaline earth metals, and rare-earth metals increases the stabihty of alumina with respect to phase transitions and loss of surface area. To reduce the surface activity and to increase the stabihty of alumina for use as a support of metal catalysts in commercial appHcations, phases that have already gone through most of the possible structural evolution (0-AI2O3 or a-Al203) with moderate to low surface area (100 to 5 m g ) are needed doping with alkah metal, alkahne-earth metal, or rare earth metal cations may also be useful. Other impurities may be present in... [Pg.380]


See other pages where Structure supported transition metal catalysts is mentioned: [Pg.148]    [Pg.102]    [Pg.115]    [Pg.394]    [Pg.40]    [Pg.312]    [Pg.1438]    [Pg.201]    [Pg.77]    [Pg.307]    [Pg.150]    [Pg.40]    [Pg.353]    [Pg.1]    [Pg.342]    [Pg.261]    [Pg.179]    [Pg.601]    [Pg.134]    [Pg.92]    [Pg.477]    [Pg.107]    [Pg.466]    [Pg.11]    [Pg.151]    [Pg.437]    [Pg.127]    [Pg.77]    [Pg.307]    [Pg.46]    [Pg.152]    [Pg.321]   
See also in sourсe #XX -- [ Pg.39 , Pg.209 ]




SEARCH



Catalyst supports support structure

Catalysts structured

Catalysts, structures

Structural support

Support structures

Supported metal catalysts

Supporting structure

Transition catalyst

Transition metal catalysts supports

Transition metals structure

© 2024 chempedia.info