Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure determination Ultraviolet/visible spectroscopy

NMR, EPR, EXAFS, infrared, resonance Raman, and ultraviolet-visible spectroscopy should follow. Kinetic and thermodynamic information about the model complexes in comparison to that known for natural systems should be gathered. These concepts were updated in 1999 by Karlin, writing in reference 49. Model studies should provide reasonable bases for hypotheses about a biological structure and its reaction intermediates. Researchers should determine the model s competence in carrying out reactions that mimic metalloprotein chemistry. Using these methods and criteria, researchers may hope to exploit Cu-oxygen systems as practical dioxygen carriers or oxidation catalysts for laboratory and industrial purposes. [Pg.215]

Several spectroscopic techniques, namely, Ultraviolet-Visible Spectroscopy (UV-Vis), Infrared (IR), Nuclear Magnetic Resonance (NMR), etc., have been used for understanding the mechanism of solvent-extraction processes and identification of extracted species. Berthon et al. reviewed the use of NMR techniques in solvent-extraction studies for monoamides, malonamides, picolinamides, and TBP (116, 117). NMR spectroscopy was used as a tool to identify the structural parameters that control selectivity and efficiency of extraction of metal ions. 13C NMR relaxation-time data were used to determine the distances between the carbon atoms of the monoamide ligands and the actinides centers. The II, 2H, and 13C NMR spectra analysis of the solvent organic phases indicated malonamide dimer formation at low concentrations. However, at higher ligand concentrations, micelle formation was observed. NMR studies were also used to understand nitric acid extraction mechanisms. Before obtaining conformational information from 13C relaxation times, the stoichiometries of the... [Pg.80]

There is a rapidly developng literature describing other metal oxides in zeolites, with Ti02 being well represented. [231-234] The characterization of these materials is largely based on ultraviolet-visible spectroscopy, and the structures are less than well understood. Whether the encaged spedes are clusters and whether they are uniform in structure remains to be determined. Similar statements can also be made about the materials described in the following sections (4.6.2.3 and 4.6.2.4). [Pg.361]

Chapter 14 introduced three instrumental techniques that are used to determine the structures of organic compounds mass spectrometry, IR spectroscopy, and ultraviolet/ visible spectroscopy. Now we will look at a fourth technique nuclear magnetic resonance (NMR) spectroscopy. NMR spectroscopy helps to identify (he carbon-hydrogen framework of an organic compound. [Pg.649]

We will concentrate upon the most commonly used techniques in organic structure determination nuclear magnetic resonance (NMR), infrared (IR) and ultraviolet-visible (UV-Vis) spectroscopy, and mass spectrometry (MS). The amount of space devoted to each technique in this text is meant to be representative of their current usage for structure determination. [Pg.183]

Volumes 50 and 51 of the Advances, published in 2006 and 2007, respectively, were the first of a set of three focused on the physical characterization of solid catalysts in the functioning state. This volume completes the set. The six chapters presented here are largely focused on the determination of structures and electronic properties of components and surfaces of solid catalysts. The first chapter is devoted to photoluminescense spectroscopy it is followed by chapters on Raman spectroscopy ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy X-ray photoelectron spectroscopy X-ray diffraction and X-ray absorption spectroscopy. [Pg.480]

As already pointed out, the most direct consequence of a reduction in the nanocrystallite size on the electronic structure of semiconducting materials is a pronounced increase in the band gap due to the quantum confinement effect. While there are several ways to quantitatively understand this phenomenon from a theoretical standpoint, the experimental determination of the band gap variation as a function of size is most directly performed by ultraviolet-visible absorption spectroscopy, with the experimental absorption threshold corresponding to the direct band gap in the material. As the band gap shifts to higher energy, the blue-shift in the absorption edge signals the formation of progressively smaller sized nanocrystals. Therefore, UV-Vis absorption spectroscopy has played an immensely important role in the study of these systems and we discuss the essential aspects in Section 11.3. [Pg.372]

Molecular spectroscopy based on ultraviolet, visible, and infrared radiation is widely used for the identification and detennination of many inorganic, organic, and biochemical species. Molecular ultraviolet/visible absorption spectroscopy is used primcirily for quantitative analysis and is probably more extensively applied in chemical and clinical laboratories throughout the world than any other single method. Infrared absorption spectroscopy is a poweiful too for determining the structure of both inorganic and organic compounds. In addition, it now plays an important role in quantitative analysis, particularly in the area of environmental pollution. [Pg.784]

In the columns identifying the experimental method, MW stands for any method studying the pure rotational spectrum of a molecule except for rotational Raman spectroscopy marked by the rot. Raman entry. FUR stands for Fourier transform infhired spectroscopy, IR laser for any infiured laser system (diode laser, difference frequency laser or other). LIF indicates laser induced fluorescence usually in the visible or ultraviolet region of the spectrum, joint marks a few selected cases where spectroscopic and diffraction data were used to determine the molecular structure. A method enclosed in parentheses means that the structure has been derived from data that were collected by this method in earlier publications. The type of structure determined is shown by the symbols identifying the various methods discussed in section II. V/ refers to determinations using the Kraitchman/Chutjian expressions or least squares methods fitting only isotopic differences of principal or planar moments (with or without first... [Pg.206]

Today, a number of different instrumental techniques are used to identify organic compounds. These techniques can be performed quickly on small amounts of a compound and can provide much more information about the compound s structure than simple chemical tests can provide. We have already discussed one such technique ultraviolet/visible (UVA/is) spectroscopy, which provides information about organic compounds with conjugated double bonds. In this chapter, we will look at two more instrumental techniques mass spectrometry and infrared (IR) spectroscopy. Mass spectrometry allows us to determine the molecular mass and the molecular formula of a compound, as well as certain structural features of the compound. Infrared spectroscopy allows us to determine the kinds of functional groups a compound has. In the next chapter, we will look at nuclear magnetic resonance (NMR) spectroscopy, which provides information about the carbon-hydrogen framework of a compound. Of these instrumental techniques, mass spectrometry is the only one that does not involve electromagnetic radiation. Thus, it is called spectrometry, whereas the others are called spectroscopy. [Pg.483]

Organic stractures can be determined accurately and quickly by spectroscopic methods. Mass spectrometry determines mass of a molecule and its atomic composition. NMR spectroscopy reveals the carbon skeleton of the molecule, whereas IR spectroscopy determines functional groups in the molecules. UV-visible spectroscopy tells us about the conjugation present in a molecule. Spectroscopic methods have also provided valuable evidence for the intermediacy of transient species. Most of the common spectroscopic techniques are not appropriate for examining reactive intermediates. The exceptions are visible and ultraviolet spectroscopy, whose inherent sensitivity allows them to be used to detect very low concentrations for example, particularly where combined with flash photolysis when high concentrations of the intermediate can be built up for UV detection, or by using matrix isolation techniques when species such as ortho-benzyne can be detected and their IR spectra obtained. Unfortunately, UV and visible spectroscopy do not provide the rich structural detail afforded by IR and especially H and NMR spectroscopy. Current mechanistic studies use mostly stable isotopes such as H, and 0. Their presence and position in a molecule can... [Pg.15]

Ultraviolet-visible (UV-Vis) spectroscopy (281, 337) is one of the oldest spectroscopic techniques and hence one of the first to be applied to structure determination. The substitution pattern of many aromatic natural products - flavonoids being an excellent example (241) - are still determined by UV-Vis spectroscopy including acid-based-, and aluminum trichloride-induced shifts of absorbance bands (227, 288, 343, 389). Adduct formation of the purine and pyrimidine bases are also investigated by UV-Vis spectroscopy (352), and solvent-induced shifts are often useful tools of structure determination for many other classes of compounds. There remains, however, a wealth of uncovered information in the UV-Vis spectra of natural products masked by broad, overlapping bands with little or no fine structure. [Pg.93]

Spectroscopy techniques [1] such as ultraviolet (UV), visible, infrared (IR), Raman, nuclear magnetic resonance (NMR), electron spin resonance (ESR), and mass spectroscopy (MS) are widely recognized and intensively used in structure determination and analysis. [Pg.201]

All measurements were made in the gas phase. The methods used are abbreviated as follows. UV ultraviolet (including visible) spectroscopy IR infrared spectroscopy R Raman spectroscopy MW microwave spectroscopy ED electron diffraction NMR nuclear magnetic resonance LMR laser magnetic resonance EPR electron paramagnetic resonance MBE molecular beam electric resonance. If two methods were used jointly for structure determination, they are listed together, as (ED, MW). If the numerical values listed refer to the equilibrium values, they are specified by and 6. In other cases the listed values represent various average values in vibrational states it is frequently the case that they represent the Tj structure derived from several isotopic species for MW or the r structure (i.e., the average internuclear distances at thermal equilibrium) for ED. These internuclear distances for the same atom pair with different definitions may sometimes differ as much... [Pg.1242]

Previous authors have taught the principles of solving organic structures from spectra by using a combination of methods NMR, infrared spectroscopy (IR), ultraviolet spectroscopy (UV) and mass spectrometry (MS). However, the information available from UV and MS is limited in its predictive capability, and IR is useful mainly for determining the presence of functional groups, many of which are also visible in carbon-13 NMR spectra. Additional information such as elemental analysis values or molecular weights is also often presented. [Pg.220]

Information about the structure of gas molecules haB been obtained by several methods. Spectroscopic studies in the infrared, visible, and ultraviolet regions have provided much information about the simplest molecules, especially diatomic molecules, and a few polyatomic molecules. Microwave spectroscopy and molecular-beam studies have yielded very accurate interatomic distances and other structural information about many molecules, including some of moderate complexity. Molecular properties determined by spectroscopic methods are given in the two books by G. Herzberg, Spectra of Diatomic Molecules, 1950. and Infrared and Raman Spectra, 1945, Van Nostrand Co., New York. The information obtained about molecules by microwave spectroscopy is summarised by C. H. Townes and A. L. Schawlow in their book Microwave Spectroscopy of Gases, McGraw-Hill Book Co., New York, 1955. [Pg.70]

Ionization constants of heterocyclic substances may be readily determined by potentiometric titration, spectroscopy (ultraviolet or visible), or conductivity (1456) and by p.m.r. spectroscopy (1457, 1458). Estimates of ionization constants may be obtained by calculation (1459-1461). They are essential data in practical heterocyclic chemistry and of immense use in the establishment of structures in potential tautomeric compounds. Albert (1462) gives a simple treatment of ionization constants as applied to heterocyclic chemistry. [Pg.310]

Infrared, visible, and ultraviolet spectroscopy can determine bonding features, and thus structure. [Pg.1242]

Luminescence spectroscopy is an analytical method derived from the emission of light by molecules which have become electronically excited subsequent to the absorption of visible or ultraviolet radiation. Due to its high analytical sensitivity (concentrations of luminescing analytes 1 X 10 9 moles/L are routinely determined), this technique is widely employed in the analysis of drugs and metabolites. These applications are derived from the relationships between analyte concentrations and luminescence intensities and are therefore similar in concept to most other physicochemical methods of analysis. Other features of luminescence spectral bands, such as position in the electromagnetic spectrum (wavelength or frequency), band form, emission lifetime, and excitation spectrum, are related to molecular structure and environment and therefore also have analytical value. [Pg.441]


See other pages where Structure determination Ultraviolet/visible spectroscopy is mentioned: [Pg.174]    [Pg.174]    [Pg.2114]    [Pg.363]    [Pg.60]    [Pg.257]    [Pg.178]    [Pg.307]    [Pg.164]    [Pg.328]    [Pg.3]    [Pg.642]    [Pg.87]    [Pg.1348]    [Pg.610]    [Pg.845]    [Pg.526]    [Pg.1417]    [Pg.1397]    [Pg.732]    [Pg.19]    [Pg.220]    [Pg.94]    [Pg.264]    [Pg.2]    [Pg.11]    [Pg.3]    [Pg.81]   


SEARCH



Spectroscopy structure)

Spectroscopy ultraviolet visible

Ultraviolet spectroscopy

Ultraviolet spectroscopy, determination

Ultraviolet-visible

© 2024 chempedia.info