Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereochemistry salts

Stereoselectivities of 99% are also obtained by Mukaiyama type aldol reactions (cf. p. 58) of the titanium enolate of Masamune s chired a-silyloxy ketone with aldehydes. An excess of titanium reagent (s 2 mol) must be used to prevent interference by the lithium salt formed, when the titanium enolate is generated via the lithium enolate (C. Siegel, 1989). The mechanism and the stereochemistry are the same as with the boron enolate. [Pg.62]

Reaction of (T)-(-)-2-acetoxysuccinyl chloride (78), prepared from (5)-mahc acid, using the magnesiobromide salt of monomethyl malonate afforded the dioxosuberate (79) which was cyclized with magnesium carbonate to a 4 1 mixture of cyclopentenone (80) and the 5-acetoxy isomer. Catalytic hydrogenation of (80) gave (81) having the thermodynamically favored aH-trans stereochemistry. Ketone reduction and hydrolysis produced the bicycHc lactone acid (82) which was converted to the Corey aldehyde equivalent (83). A number of other approaches have been described (108). [Pg.163]

Cobalt exists in the +2 or +3 valence states for the majority of its compounds and complexes. A multitude of complexes of the cobalt(III) ion [22541-63-5] exist, but few stable simple salts are known (2). Werner s discovery and detailed studies of the cobalt(III) ammine complexes contributed gready to modem coordination chemistry and understanding of ligand exchange (3). Octahedral stereochemistries are the most common for the cobalt(II) ion [22541-53-3] as well as for cobalt(III). Cobalt(II) forms numerous simple compounds and complexes, most of which are octahedral or tetrahedral in nature cobalt(II) forms more tetrahedral complexes than other transition-metal ions. Because of the small stabiUty difference between octahedral and tetrahedral complexes of cobalt(II), both can be found in equiUbrium for a number of complexes. Typically, octahedral cobalt(II) salts and complexes are pink to brownish red most of the tetrahedral Co(II) species are blue (see Coordination compounds). [Pg.377]

Electrophilic attack on the sulfur atom of thiiranes by alkyl halides does not give thiiranium salts but rather products derived from attack of the halide ion on the intermediate cyclic salt (B-81MI50602). Treatment of a s-2,3-dimethylthiirane with methyl iodide yields cis-2-butene by two possible mechanisms (Scheme 31). A stereoselective isomerization of alkenes is accomplished by conversion to a thiirane of opposite stereochemistry followed by desulfurization by methyl iodide (75TL2709). Treatment of thiiranes with alkyl chlorides and bromides gives 2-chloro- or 2-bromo-ethyl sulfides (Scheme 32). Intramolecular alkylation of the sulfur atom of a thiirane may occur if the geometry is favorable the intermediate sulfonium ions are unstable to nucleophilic attack and rearrangement may occur (Scheme 33). [Pg.147]

Dieckmann reaction, 4, 471 Indolizidine alkaloids mass spectra, 4, 444 Indolizidine immonium salts reactions, 4, 462 Indolizi dines basicity, 4, 461 circular dichroism, 4, 450 dipole moments, 4, 450 IR spectra, 4, 449 reactivity, 4, 461 reviews, 4, 444 stereochemistry, 4, 444 synthesis, 4, 471-476 Indolizine, 1-acetoxy-synthesis, 4, 466 Indolizine, 8-acetoxy-hydrolysis, 4, 452 synthesis, 4, 466 Indolizine, I-acetyl-2-methyI-iodination, 4, 457 Indolizine, 3-acyloxy-cyclazine synthesis from, 4, 460 Indolizine, alkyl-UV spectra, 4, 449 Indolizine, amino-instability, 4, 455 synthesis, 4, 121 tautomerism, 4, 200, 452 Indolizine, 1-amino-tautomerism, 4, 38 Indolizine, 3-amino-synthesis, 4, 461, 470... [Pg.672]

Although ethereal solutions of methyl lithium may be prepared by the reaction of lithium wire with either methyl iodide or methyl bromide in ether solution, the molar equivalent of lithium iodide or lithium bromide formed in these reactions remains in solution and forms, in part, a complex with the methyllithium. Certain of the ethereal solutions of methyl 1ithium currently marketed by several suppliers including Alfa Products, Morton/Thiokol, Inc., Aldrich Chemical Company, and Lithium Corporation of America, Inc., have been prepared from methyl bromide and contain a full molar equivalent of lithium bromide. In several applications such as the use of methyllithium to prepare lithium dimethyl cuprate or the use of methyllithium in 1,2-dimethyoxyethane to prepare lithium enolates from enol acetates or triraethyl silyl enol ethers, the presence of this lithium salt interferes with the titration and use of methyllithium. There is also evidence which indicates that the stereochemistry observed during addition of methyllithium to carbonyl compounds may be influenced significantly by the presence of a lithium salt in the reaction solution. For these reasons it is often desirable to have ethereal solutions... [Pg.106]

Winstein suggested that two intermediates preceding the dissociated caibocation were required to reconcile data on kinetics, salt effects, and stereochemistry of solvolysis reactions. The process of ionization initially generates a caibocation and counterion in proximity to each other. This species is called an intimate ion pair (or contact ion pair). This species can proceed to a solvent-separated ion pair, in which one or more solvent molecules have inserted between the caibocation and the leaving group but in which the ions have not diffused apart. The free caibocation is formed by diffusion away from the anion, which is called dissociation. [Pg.270]

The stereochemistry of addition is usually anti for alkyl-substituted alkynes, whereas die addition to aryl-substituted compounds is not stereospecific. This suggests a termo-iecular mechanism in the alkyl case, as opposed to an aryl-stabilized vinyl cation mtermediate in the aryl case. Aryl-substituted alkynes can be shifted toward anti addition by including bromide salts in the reaction medium. Under these conditions, a species preceding the vinyl cation must be intercepted by bromide ion. This species can be presented as a complex of molecular bromine with the alkyne. An overall mechanistic summary is shown in the following scheme. [Pg.375]

It is not known whether the amine assists the elimination of the nitrogen, but that the iminium salt retains its stereochemistry has been demonstrated (709). When a mixture of 68 and 69of 1 5 ratio is treated with diazomethane, the ratio of 70 71 obtained in 75% yield and determined spectroscopically was still 1 5. The traw-N-isopropyl-N-methylisobutylidinium perchlorate (69) was prepared by alkylation of an aldimine salt with diazomethanc and... [Pg.193]

Lower oxidation states are rather sparsely represented for Zr and Hf. Even for Ti they are readily oxidized to +4 but they are undoubtedly well defined and, whatever arguments may be advanced against applying the description to Sc, there is no doubt that Ti is a transition metal . In aqueous solution Ti can be prepared by reduction of Ti, either with Zn and dilute acid or electrolytically, and it exists in dilute acids as the violet, octahedral [Ti(H20)6] + ion (p. 970). Although this is subject to a certain amount of hydrolysis, normal salts such as halides and sulfates can be separated. Zr and are known mainly as the trihalides or their derivatives and have no aqueous chemistry since they reduce water. Table 21.2 (p. 960) gives the oxidation states and stereochemistries found in the complexes of Ti, Zr and Hf along with illustrative examples. (See also pp. 1281-2.)... [Pg.958]

Green-yellow salts of the tetrahedral [MX4] (X = Cl, Br, I) ions can be obtained from ethanolic solutions and are well characterized. Furthermore, a whole series of adducts [MnX2L2] (X = Cl, Br, I) are known where L is an N-, P- or A -donor ligand, and both octahedral and tetrahedral stereochemistries are found. Of interest because of the possible role of manganese porphyrins in photosynthesis is [Mn (phthalocyanine)] which is square planar. The reaction of aqueous edta with MnC03 yields... [Pg.1060]

Similar halogeno complexes are produced in solution, and several salts of [HgXs]" have been isolated and characterized they display a variety of stereochemistries. In [HgCl3] the environment of the Hg is either distorted octahedral (with small cations such as NHj" "... [Pg.1218]

The iminium salt 165, derived from acid treatment of 1,4-dihydropyridine 164, on intramolecular cyclization on the indole nucleus gave pentacyclic compound 166 (83T3673). The tmns stereochemistry of H3 and H9 in 166 (biogenetic... [Pg.301]

Two isomeric structures can be obtained for these products ( -113 and/or Z-113). The stereochemistry was conveniently elucidated on the basis of NMR data which showed coupling constant values 7(H,CO) consistent with the -isomers only. The formation of 113 was explained to occur via the enolate salts (86JHC199). Catalytic... [Pg.128]

Divalent sulfur compounds are achiral, but trivalent sulfur compounds called sulfonium stilts (R3S+) can be chiral. Like phosphines, sulfonium salts undergo relatively slow inversion, so chiral sulfonium salts are configurationally stable and can be isolated. The best known example is the coenzyme 5-adenosylmethionine, the so-called biological methyl donor, which is involved in many metabolic pathways as a source of CH3 groups. (The S" in the name S-adenosylmethionine stands for sulfur and means that the adeno-syl group is attached to the sulfur atom of methionine.) The molecule has S stereochemistry at sulfur ana is configurationally stable for several days at room temperature. Jts R enantiomer is also known but has no biological activity. [Pg.315]

Table 2. Effect of Lithium Salt on the Stereochemistry of the Carboxylation of ( + )-(/ S)-/ra s-l-(4-Methylphcnyl-sulfinylmcthyl)-4-(methoxymethyl)cyclohexane in THF... Table 2. Effect of Lithium Salt on the Stereochemistry of the Carboxylation of ( + )-(/ S)-/ra s-l-(4-Methylphcnyl-sulfinylmcthyl)-4-(methoxymethyl)cyclohexane in THF...

See other pages where Stereochemistry salts is mentioned: [Pg.130]    [Pg.227]    [Pg.130]    [Pg.227]    [Pg.28]    [Pg.481]    [Pg.29]    [Pg.6]    [Pg.33]    [Pg.134]    [Pg.178]    [Pg.798]    [Pg.867]    [Pg.887]    [Pg.888]    [Pg.70]    [Pg.965]    [Pg.187]    [Pg.388]    [Pg.1027]    [Pg.1218]    [Pg.321]    [Pg.420]    [Pg.160]    [Pg.1287]    [Pg.241]    [Pg.731]    [Pg.92]    [Pg.117]    [Pg.125]    [Pg.151]    [Pg.156]    [Pg.165]    [Pg.177]    [Pg.225]    [Pg.228]   
See also in sourсe #XX -- [ Pg.561 ]




SEARCH



Phosphonium salts stereochemistry

Stereochemistry diastereomeric salts

© 2024 chempedia.info