Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular bromine

Figure A3.10.10 STM image (55 x 55 mn ) of a Si(lOO) surface exposed to molecular bromine at 800 K. The dark areas are etch pits on the terraces, while the bright rows that run perpendicular to the terraces are Si dimer chains. The dimer chains consist of Si atoms released from terraces and step edges during etching [28],... Figure A3.10.10 STM image (55 x 55 mn ) of a Si(lOO) surface exposed to molecular bromine at 800 K. The dark areas are etch pits on the terraces, while the bright rows that run perpendicular to the terraces are Si dimer chains. The dimer chains consist of Si atoms released from terraces and step edges during etching [28],...
Such a mechanism is supported by the fact that the reaction is accelerated by benzoyl peroxide and other radical-producing agents. It is now however considered that the function of the A -bromosuceinimide is to provide a constant, very low concentration of molecular bromine (Tedder et al,). [Pg.177]

N Bromosuccimmide provides a low concentration of molecular bromine which reacts with alkenes by a mechanism analogous to that of other free radical halogenations... [Pg.397]

The maximum acceptable concentration for free (molecular) bromine is 0.1 mg/L for ionic bromate, 100 mg/L. [Pg.289]

The electrophilic substitution of thiophene is much easier than that of benzene thus, thiophene is protonated in aqueous sulphuric acid about 10 times more rapidly than benzene, and it is brominated by molecular bromine in acetic acid about 10 times more rapidly than benzene. Benzene in turn is between 10 and lo times more reactive than an uncharged pyridine ring to electrophilic substitution. [Pg.44]

As with addition of other electrophiles, halogenation of conjugated dienes can give 1,2- or 1,4-addition products. When molecular bromine is used as the brominating agent in chlorinated hydrocarbon solvent, the 1,4-addition product dominates by 7 1 in the case of butadiene. ... [Pg.368]

The product distribution can be shifted to favor the 1 -product by use of such milder brominating agents as the pyridine-bromine complex or the tribromide ion, Br3. It is believed that molecular bromine reacts through a cationic intermediate, whereas the less reactive brominating agents involve a process more like the AdgS and-addition mechanism. [Pg.369]

The stereochemistry of addition is usually anti for alkyl-substituted alkynes, whereas die addition to aryl-substituted compounds is not stereospecific. This suggests a termo-iecular mechanism in the alkyl case, as opposed to an aryl-stabilized vinyl cation mtermediate in the aryl case. Aryl-substituted alkynes can be shifted toward anti addition by including bromide salts in the reaction medium. Under these conditions, a species preceding the vinyl cation must be intercepted by bromide ion. This species can be presented as a complex of molecular bromine with the alkyne. An overall mechanistic summary is shown in the following scheme. [Pg.375]

Molecular bromine is believed to be the reactive brominating agent in uncatalyzed brominations. The brominations of benzene and toluene are first-order in both bromine and the aromatic substrate in trifluoroacetic acid solution, but the rate expressions become more complicated when these reactions take place in the presence of water. " The bromination of benzene in aqueous acetic acid exhibits a first-order dependence on bromine concentration when bromide ion is present. The observed rate is dependent on bromide ion concentration, decreasing with increasing bromide ion concentration. The detailed kinetics are consistent with a rate-determining formation of the n-complex when bromide ion concentration is low, but with a shift to reversible formation of the n-complex... [Pg.577]

A halogenating system related to the preceding case is formed by the reaction of triphenylphosphine with molecular bromine or chlorine. The system is not as sensitive to moisture as the phosphine-carbon tetrahalide system (see preceding section), but it suffers from the disadvantage that hydrohalic acids are produced as the reaction proceeds. Nevertheless, sensitive compounds can be successfully halogenated by the system, as exemplified by the preparation of cinnamyl bromide from the alcohol. [Pg.46]

Current views (100) on the mechanism of bromination by NBS invoke the formation of molecular bromine and bromine atoms in low concentration, which subsequently act as the brominating agent. The bromination reaction was studied in detail in this laboratory under a variety of conditions using 93 (R = Ms) as a model. The product 94 (R = Ms) was indeed formed (42%) when NBS was substituted by 1.1 equivalents of bromine which was added at a slow rate to the reaction mixture. The yield was 68% when benzoyl peroxide was used as a catalyst. Using NBS alone or in the presence of reagents such as barium carbonate, pyridine, or s-trinitrobenzene, the yield was 60-70%. [Pg.193]

When heated under reflux in 48% hydrobromic acid 4-bromo-2(3W)-benzothiazolones rearranged to the 6-bromo isomers (41). The mechanism is believed to involve initial protonation at C-4, followed by either bromide ion attack at C-6 (with concomitant SN2 expulsion of the 4-bromine), or bromide attack at the 4-bromo group to remove it as molecular bromine. Subsequent electrophilic bromination at the 6-position is then possible. The latter process is favored by the authors. Further bromination of 41 gave a 32% yield of the 4,6-dibromobenzothiazolone (91T2255) (Scheme 26). [Pg.276]

Bradfield et al.21g first studied the kinetics of molecular bromination using aromatic ethers in 50% aqueous acetic acid at 18 °C. They showed that the kinetics are complicated by the hydrogen bromide produced in the reaction which reacts with free bromine to give the tribromide in BrJ, a very unreactive electrophile. To avoid this complication, reactions were carried out in the presence of 5-10 molar excess of hydrogen bromide, and under these conditions second-order rate coefficients (believed to be I02k2 by comparison with later data) were obtained as follows after making allowance for the equilibrium Br2 + Br7 Bn, for which K = 50 at 18 °C 4-chloroanisole (1.12), 4-bromoanisole (1.20), 4-... [Pg.113]

Kinetic studies of molecular bromination have been carried out using a variety of solvents other than acetic acid. The bromination of 2-nitroanisole by bromine in water revealed that molecular bromine is the reactive species and that the tribromide ion is very unreactive191. By making allowance for the concentration of free bromine (which differs from the stoichiometric concentration through reaction with bromine ion), good second-order rate coefficients were obtained by application of equation (133) with k2 = 0.062 at 25 °C the dominance of the bimolecular mechanism is to be expected here in view of the trend observed on making acetic acid media more aqueous. [Pg.120]

Separate experiments on the iodine-catalysed bromination of these compounds revealed a rate maximum at [I2]/[Br2] = 0.35, from which it follows that the concentrations of molecular bromine and iodine monobromide are equal, i.e. the latter catalyses bond-breaking in the former in the intermediate. Since iodine monobromide is dissociated into iodine and bromine, dissociation constant K, [Br2]VAT is proportional to [IBr] and hence equation (152) may be rewritten in the form... [Pg.131]

An investigation of the relative rates of bromination of benzene, toluene, m-and p-xylene by bromine in acetic acid, catalysed by mercuric acetate, revealed relative rates almost identical with those obtained with molecular bromine322, though as in the bromination of biphenyl by bromine acetate (p. 129) it is quite inconsistent for a much more reactive electrophile to have the same selectivity. Relative rates were (molecular bromination values in parenthesis) benzene 1.0 toluene, 480 (610) p-xylene, 2.1 x 103 (2.2 x 103) m-xylene 2.0 x 10s (2.1 x 10s). [Pg.133]


See other pages where Molecular bromine is mentioned: [Pg.125]    [Pg.175]    [Pg.174]    [Pg.699]    [Pg.704]    [Pg.705]    [Pg.145]    [Pg.193]    [Pg.153]    [Pg.176]    [Pg.219]    [Pg.261]    [Pg.321]    [Pg.85]    [Pg.85]    [Pg.87]    [Pg.113]    [Pg.114]    [Pg.115]    [Pg.123]    [Pg.123]    [Pg.123]    [Pg.124]    [Pg.125]    [Pg.127]    [Pg.127]    [Pg.128]    [Pg.128]    [Pg.128]    [Pg.129]    [Pg.129]    [Pg.130]    [Pg.132]    [Pg.133]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



© 2024 chempedia.info