Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steam dehydrogenation

Steam dehydrogenation is to increase the equihbrium conversion by decreasing the partial pressure of paraffin, an idea similar to dehydrogenation under vacuum. Using Aspen Plus, the equihbrium conversion under different steam/propane and hydrogen/propane ratio was predicted and the results are shown in Fig. 2.13. [Pg.112]

A two-step process involving conventional nonoxidative dehydrogenation of propane to propylene in the presence of steam, followed by the catalytic ammoxidation to acrylonitrile of the propylene in the effluent stream without separation, is also disclosed (65). [Pg.184]

Natural gas Hquids represent a significant source of feedstocks for the production of important chemical building blocks that form the basis for many commercial and iadustrial products. Ethyleae (qv) is produced by steam-crackiag the ethane and propane fractions obtained from natural gas, and the butane fraction can be catalyticaHy dehydrogenated to yield 1,3-butadiene, a compound used ia the preparatioa of many polymers (see Butadiene). The / -butane fractioa can also be used as a feedstock ia the manufacture of MTBE. [Pg.174]

Dehydrogenation of Tertiary Amylenes, The staiting material here is a fiaction which is cut from catal57tic clacking of petroleum. Two of the tertiary amylene isomers, 2-methyl-l-butene and 2-methyl-2-butene, are recovered in high purity by formation of methyl tertiary butyl ether and cracking of this to produce primarily 2-methyl-2-butene. The amylenes are mixed with steam and dehydrogenated over a catalyst. The cmde isoprene can be purified by conventional or extractive distillation. [Pg.468]

Worldwide propylene production and capacity utilization for 1992 are given in Table 6 (74). The world capacity to produce propylene reached 41.5 X 10 t in 1992 the demand for propylene amounted to 32.3 x 10 t. About 80% of propylene produced worldwide was derived from steam crackers the balance came from refinery operations and propylene dehydrogenation. The manufacture of polypropylene, a thermoplastic resin, accounted for about 45% of the total demand. Demand for other uses included manufacture of acrylonitrile (qv), oxochemicals, propylene oxide (qv), cumene (qv), isopropyl alcohol (see Propyl alcohols), and polygas chemicals. Each of these markets accounted for about 5—15% of the propylene demand in 1992 (Table 7). [Pg.127]

Fig. 4. Manufacture of styrene by adiabatic dehydrogenation of ethylbenzene A, steam superheater B, reactor section C, feed—effluent exchanger D,... Fig. 4. Manufacture of styrene by adiabatic dehydrogenation of ethylbenzene A, steam superheater B, reactor section C, feed—effluent exchanger D,...
The dehydrogenation of the mixture of m- and -ethyltoluenes is similar to that of ethylbenzene, but more dilution steam is required to prevent rapid coking on the catalyst. The recovery and purification of vinyltoluene monomer is considerably more difficult than for styrene owing to the high boiling point and high rate of thermal polymerization of the former and the complexity of the reactor effluent, which contains a large number of by-products. Pressures as low as 2.7 kPa (20 mm Hg) are used to keep distillation temperatures low even in the presence of polymerization inhibitor. The finished vinyltoluene monomer typically has an assay of 99.6%. [Pg.489]

Styrene. Commercial manufacture of this commodity monomer depends on ethylbenzene, which is converted by several means to a low purity styrene, subsequendy distilled to the pure form. A small percentage of styrene is made from the oxidative process, whereby ethylbenzene is oxidized to a hydroperoxide or alcohol and then dehydrated to styrene. A popular commercial route has been the alkylation of benzene to ethylbenzene, with ethylene, after which the cmde ethylbenzene is distilled to give high purity ethylbenzene. The ethylbenzene is direcdy dehydrogenated to styrene monomer in the vapor phase with steam and appropriate catalysts. Most styrene is manufactured by variations of this process. A variety of catalyst systems are used, based on ferric oxide with other components, including potassium salts, which improve the catalytic activity (10). [Pg.494]

The pattern of commercial production of 1,3-butadiene parallels the overall development of the petrochemical industry. Since its discovery via pyrolysis of various organic materials, butadiene has been manufactured from acetylene as weU as ethanol, both via butanediols (1,3- and 1,4-) as intermediates (see Acetylene-DERIVED chemicals). On a global basis, the importance of these processes has decreased substantially because of the increasing production of butadiene from petroleum sources. China and India stiU convert ethanol to butadiene using the two-step process while Poland and the former USSR use a one-step process (229,230). In the past butadiene also was produced by the dehydrogenation of / -butane and oxydehydrogenation of / -butenes. However, butadiene is now primarily produced as a by-product in the steam cracking of hydrocarbon streams to produce ethylene. Except under market dislocation situations, butadiene is almost exclusively manufactured by this process in the United States, Western Europe, and Japan. [Pg.347]

Oxydehydrogenation of /i-Butenes. Normal butenes can be oxidatively dehydrogenated to butadiene in the presence of high concentration of steam with fairly high selectivity (234). The conversion is no longer limited by thermodynamics because of the oxidation of hydrogen to water. Reaction temperature is below about 600°C to minimise over oxidation. Pressure is about 34—103 kPa (5—15 psi). [Pg.347]

The various sources of isobutylene are C streams from fluid catalytic crackers, olefin steam crackers, isobutane dehydrogenation units, and isobutylene produced by Arco as a coproduct with propylene oxide. Isobutylene concentrations (weight basis) are 12 to 15% from fluid catalytic crackers, 45% from olefin steam crackers, 45 to 55% from isobutane dehydrogenation, and high purity isobutylene coproduced with propylene oxide. The etherification unit should be designed for the specific feedstock that will be processed. [Pg.373]

In most existing styrene processes, the catalyst is loaded into large, radial flow reactors, which are operated adiabaticaHy at low pressure and temperatures near 600°C. Heat is suppHed by superheated steam. During start-up, dehydrogenation begins slowly and accelerates as the Fe (HI) is reduced to Fe (II,III). The catalyst, which was red in color when fresh, turns to the characteristic black color of Fe O. ... [Pg.198]

Thermodynamics. Along with stated yields goes heat requirements for the reactor. The thermodynamics for this operation should be checked, as the author once did for a proposed ethyl-benzene dehydrogenation process. Ethylbenzene and steam w-ere fed to the reactor, and unreacted ethyl-benzene and steam exited the reactor together with the sought product, styrene, and eight side products. [Pg.217]

This is an endothermic reaction in which a volume increase accompanies dehydrogenation. The reaction is therefore favoured by operation at reduced pressure. In practice steam is passed through with the ethylbenzene in order to reduce the partial pressure of the latter rather than carrying out a high-temperature reaction under partial vacuum. By the use of selected catalysts such as magnesium oxide and iron oxide a conversion of 35-40% per pass with ultimate yields of 90-92% may be obtained. [Pg.428]

Ethylbenzene is dehydrogenated to styrene over a fixed bed of catalyst and in the presence of a large excess of steam at 1150-1200°F and 1 atmosphere. [Pg.112]

Chemicals directly based on propane are few, although as mentioned, propane and LPG are important feedstocks for the production of olefins. Chapter 6 discusses a new process recently developed for the dehydrogenation of propane to propylene for petrochemical use. Propylene has always been obtained as a coproduct with ethylene from steam cracking processes. Chapter 6 also discusses the production of aromatics from LPG through the Cyclar process. ... [Pg.31]

Butane is primarily used as a fuel gas within the LPG mixture. Like ethane and propane, the main chemical use of butane is as feedstock for steam cracking units for olefin production. Dehydrogenation of n-butane to butenes and to butadiene is an important route for the production of synthetic rubber. n-Butane is also a starting material for acetic acid and maleic anhydride production (Chapter 6). [Pg.32]

Like ethylene, propylene (propene) is a reactive alkene that can be obtained from refinery gas streams, especially those from cracking processes. The main source of propylene, however, is steam cracking of hydrocarbons, where it is coproduced with ethylene. There is no special process for propylene production except the dehydrogenation of propane. [Pg.33]

Butadiene is obtained mainly as a coproduct with other light olefins from steam cracking units for ethylene production. Other sources of butadiene are the catalytic dehydrogenation of butanes and butenes, and dehydration of 1,4-butanediol. Butadiene is a colorless gas with a mild aromatic odor. Its specific gravity is 0.6211 at 20°C and its boiling temperature is -4.4°C. The U.S. production of butadiene reached 4.1 billion pounds in 1997 and it was the 36th highest-volume chemical. ... [Pg.37]

Selecting the naphtha type can be an important processing procedure. For example, a paraffinic-base naphtha is a better feedstock for steam cracking units because paraffins are cracked at relatively lower temperatures than cycloparaffins. Alternately, a naphtha rich in cycloparaffins would be a better feedstock to catalytic reforming units because cyclo-paraffins are easily dehydrogenated to aromatic compounds. Table 2-5 is a typical analysis of naphtha from two crude oil types. [Pg.43]


See other pages where Steam dehydrogenation is mentioned: [Pg.61]    [Pg.62]    [Pg.112]    [Pg.112]    [Pg.115]    [Pg.61]    [Pg.62]    [Pg.112]    [Pg.112]    [Pg.115]    [Pg.44]    [Pg.167]    [Pg.430]    [Pg.421]    [Pg.330]    [Pg.126]    [Pg.127]    [Pg.526]    [Pg.481]    [Pg.481]    [Pg.482]    [Pg.482]    [Pg.483]    [Pg.485]    [Pg.485]    [Pg.177]    [Pg.340]    [Pg.368]    [Pg.368]    [Pg.209]    [Pg.262]    [Pg.99]    [Pg.105]    [Pg.150]    [Pg.92]   
See also in sourсe #XX -- [ Pg.112 , Pg.113 , Pg.114 ]




SEARCH



Methane Steam Reforming and Dehydrogenation Reactions

Oxidative dehydrogenation steam reforming

© 2024 chempedia.info