Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stability of a catalyst

Common to all encapsulation methods is the provision for the passage of reagents and products through or past the walls of the compartment. In zeolites and mesoporous materials, this is enabled by their open porous structure. It is not surprising, then, that porous silica has been used as a material for encapsulation processes, which has already been seen in LbL methods [43], Moreover, ship-in-a-bottle approaches have been well documented, whereby the encapsulation of individual molecules, molecular clusters, and small metal particles is achieved within zeolites [67]. There is a wealth of literature on the immobilization of catalysts on silica or other inorganic materials [68-72], but this is beyond the scope of this chapter. However, these methods potentially provide another method to avoid a situation where one catalyst interferes with another, or to allow the use of a catalyst in a system limited by the reaction conditions. For example, the increased stability of a catalyst may allow a reaction to run at a desired higher temperature, or allow for the use of an otherwise insoluble catalyst [73]. [Pg.154]

The solvent is a sine qua non of a homogeneous catalyst system. Solvent properties are indeed very important in determining the activity, selectivity, and stability of a catalyst. Solvent stability is also essential, if the catalytic system as a whole is to be stable. As described above, several solvents have been employed in studies of cobalt-catalyzed CO reduction. Keim et al. (39) noted a substantial difference in activity and selectivity between catalyst solutions in toluene and W-methylpyrrolidone (Table I). Most of the information in this area again comes from the work of Feder and Rathke (36). Listed in Table IV are their results showing changes in the activity of the cobalt catalyst corresponding to changes in solvent polarity. The rates... [Pg.337]

Cracking of //-hexane is a well-established test reaction for the activity and activity/time stability of a catalyst. Therefore we used //-hexane and //-butane for the temperature switched (300 K - 600 K) MAS NMR studies. [Pg.414]

Besides good activity and high selectivity, the lifetime, or stability, of a catalyst... [Pg.104]

The chemical, thermal, and mechamcal stability of a catalyst determines its lifetime in industrial reactors. Catalyst stabUity is influenced by numerous factors, including decomposition, coking, and poisoning. Catalyst deactivation can be followed by measuring activity or selectivity as a function of time. [Pg.9]

The stability of a catalyst is determined by its ability to withstand changes in physical and chemical properties that take place during use, leading to catalyst deactivation. Chemical, thermal, and mechanical stability of a catalyst determines its lifetime in industrial reactors. Total catalyst lifetime is usually crucial for the economics of a catalytic process. [Pg.21]

There are various ways of judging the stability of a catalyst. The most obvious and convincing method is the performance of long-term tests under realistic feed... [Pg.60]

Finding of a subtle balance between the stability of a catalyst (and its insensitivity to impurities), and its high activity has been called one of the Holy Grails of catalysis. This is especially visible in the field of olefin metathesis a fairly old reaction that has long remained as laboratory curiosity without significance for advanced organic chemistry (Figure 1). ... [Pg.111]

Therefore, knowing the variety of evaluation methods and their applicability to determining the stability of a catalyst support or MEA is extremely helpful. It should be noted that there are other protocols for assessing support degradation but these techniques may vary by circumstance and are not heavily reported upon. The following section will discuss protocols and testing procedures utilized by many research labs as standardized testing for catalyst support durability. [Pg.49]

PPha, pyridine) organic groups (olefines, aromatic derivatives) and also form other derivatives, e.g. halides, hydrides, sulphides, metal cluster compounds Compounds containing clusters of metal atoms linked together by covalent (or co-ordinate) bands, metaldehyde, (C2H40) ( = 4 or 6). A solid crystalline substance, sublimes without melting at I12 1I5" C stable when pure it is readily formed when elhanal is left in the presence of a catalyst at low temperatures, but has unpredictable stability and will revert to the monomer, ft is used for slug control and as a fuel. [Pg.257]

The components in catalysts called promoters lack significant catalytic activity tliemselves, but tliey improve a catalyst by making it more active, selective, or stable. A chemical promoter is used in minute amounts (e.g., parts per million) and affects tlie chemistry of tlie catalysis by influencing or being part of tlie catalytic sites. A textural (structural) promoter, on tlie otlier hand, is used in massive amounts and usually plays a role such as stabilization of tlie catalyst, for instance, by reducing tlie tendency of tlie porous material to collapse or sinter and lose internal surface area, which is a mechanism of deactivation. [Pg.2702]

Alkyltin Intermedia.tes, For the most part, organotin stabilizers are produced commercially from the respective alkyl tin chloride intermediates. There are several processes used to manufacture these intermediates. The desired ratio of monoalkyl tin trichloride to dialkyltin dichloride is generally achieved by a redistribution reaction involving a second-step reaction with stannic chloride (tin(IV) chloride). By far, the most easily synthesized alkyltin chloride intermediates are the methyltin chlorides because methyl chloride reacts directiy with tin metal in the presence of a catalyst to form dimethyl tin dichloride cleanly in high yields (21). Coaddition of stannic chloride to the reactor leads directiy to almost any desired mixture of mono- and dimethyl tin chloride intermediates ... [Pg.547]

Pyrotechnic mixtures may also contain additional components that are added to modify the bum rate, enhance the pyrotechnic effect, or serve as a binder to maintain the homogeneity of the blended mixture and provide mechanical strength when the composition is pressed or consoHdated into a tube or other container. These additional components may also function as oxidizers or fuels in the composition, and it can be anticipated that the heat output, bum rate, and ignition sensitivity may all be affected by the addition of another component to a pyrotechnic composition. An example of an additional component is the use of a catalyst, such as iron oxide, to enhance the decomposition rate of ammonium perchlorate. Diatomaceous earth or coarse sawdust may be used to slow up the bum rate of a composition, or magnesium carbonate (an acid neutralizer) may be added to help stabilize mixtures that contain an acid-sensitive component such as potassium chlorate. Binders include such materials as dextrin (partially hydrolyzed starch), various gums, and assorted polymers such as poly(vinyl alcohol), epoxies, and polyesters. Polybutadiene mbber binders are widely used as fuels and binders in the soHd propellant industry. The production of colored flames is enhanced by the presence of chlorine atoms in the pyrotechnic flame, so chlorine donors such as poly(vinyl chloride) or chlorinated mbber are often added to color-producing compositions, where they also serve as fuels. [Pg.347]

Ethylene oxide catalyst research is expensive and time-consuming because of the need to break in and stabilize the catalyst before rehable data can be collected. Computer controlled tubular microreactors containing as Httle as 5 g of catalyst can be used for assessment of a catalyst s initial performance and for long-term life studies, but moving basket reactors of the Berty (77) or Carberry (78) type are much better suited to kinetic studies. [Pg.202]

Nickel and palladium react with a number of olefins other than ethylene, to afford a wide range of binary complexes. With styrene (11), Ni atoms react at 77 K to form tris(styrene)Ni(0), a red-brown solid that decomposes at -20 °C. The ability of nickel atoms to coordinate three olefins with a bulky phenyl substituent illustrates that the steric and electronic effects (54,141) responsible for the stability of a tris (planar) coordination are not sufficiently great to preclude formation of a tris complex rather than a bis (olefin) species as the highest-stoichiometry complex. In contrast to the nickel-atom reaction, chromium atoms react (11) with styrene, to form both polystyrene and an intractable material in which chromium is bonded to polystyrene. It would be interesting to ascertain whether such a polymeric material might have any catal3dic activity, in view of the current interest in polymer-sup-ported catalysts (51). [Pg.149]

Iron porphyrins (containing TPP, picket fence porphyrin, or a basket handle porphyrin) catalyzed the electrochemical reduction of CO2 to CO at the Fe(I)/Fe(0) wave in DMF, although the catalyst was destroyed after a few cycles. Addition of a Lewis acid, for example Mg , dramatically improved the rate, the production of CO, and the stability of the catalyst. The mechanism was proposed to proceed by reaction of the reduced iron porphyrin Fe(Por)] with COi to form a carbene-type intermediate [Fe(Por)=C(0 )2, in which the presence of the Lewis acid facilitates C—O bond breaking. " The addition of a Bronsted acid (CF3CH2OH, n-PrOH or 2-pyrrolidone) also results in improved catalyst efficiency and lifetime, with turnover numbers up to. 750 per hour observed. ... [Pg.258]

The ferrocene moiety is not just an innocent steric element to create a three-dimensional chiral catalyst environment. Instead, the Fe center can influence a catalytic asymmetric process by electronic interaction with the catalytic site, if the latter is directly coimected to the sandwich core. This interaction is often comparable to the stabilization of a-ferrocenylcarbocations 3 (see Sect. 1) making use of the electron-donating character of the Cp2Fe moiety, but can also be reversed by the formation of feirocenium systems thereby increasing the acidity of a directly attached Lewis acid. Alternative applications in asymmetric catalysis, for which the interaction of the Fe center and the catalytic center is less distinct, have recently been summarized in excellent extensive reviews and are outside the scope of this chapter [48, 49], Moreover, related complexes in which one Cp ring has been replaced with an ri -arene ligand, and which have, for example, been utilized as catalysts for nitrate or nitrite reduction in water [50], are not covered in this chapter. [Pg.152]

One promising extension of this approach Is surface modification by additives and their Influence on reaction kinetics. Catalyst activity and stability under process conditions can be dramatically affected by Impurities In the feed streams ( ). Impurities (promoters) are often added to the feed Intentionally In order to selectively enhance a particular reaction channel (.9) as well as to Increase the catalyst s resistance to poisons. The selectivity and/or poison tolerance of a catalyst can often times be Improved by alloying with other metals (8,10). Although the effects of Impurities or of alloying are well recognized In catalyst formulation and utilization, little Is known about the fundamental mechanisms by which these surface modifications alter catalytic chemistry. [Pg.186]


See other pages where Stability of a catalyst is mentioned: [Pg.2696]    [Pg.312]    [Pg.212]    [Pg.750]    [Pg.1]    [Pg.345]    [Pg.34]    [Pg.223]    [Pg.2696]    [Pg.10]    [Pg.2696]    [Pg.312]    [Pg.212]    [Pg.750]    [Pg.1]    [Pg.345]    [Pg.34]    [Pg.223]    [Pg.2696]    [Pg.10]    [Pg.347]    [Pg.283]    [Pg.258]    [Pg.341]    [Pg.221]    [Pg.11]    [Pg.60]    [Pg.62]    [Pg.185]    [Pg.199]    [Pg.80]    [Pg.109]    [Pg.179]    [Pg.203]    [Pg.316]    [Pg.63]    [Pg.159]    [Pg.415]    [Pg.366]    [Pg.97]    [Pg.52]    [Pg.371]    [Pg.378]   
See also in sourсe #XX -- [ Pg.72 ]




SEARCH



A stability

Catalyst stability

Catalysts stabilization

Stability as catalysts

Stability catalyst stabilization

Stability of catalysts

Stabilizer, catalyst

© 2024 chempedia.info