Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy total reflectance

Frost, M.R., Harrington, W.L., Downey, D.F., Walther, S.R. (1996) Surface metal contamination during ion implantation comparison of measurements by secondary ion mass spectroscopy, total reflection x-ray fluorescence spectrometry, and vapor phase decomposition used in conjunction with graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry. Journal of Vacuum Science Technology B Microelectronics and Nanometer Structures, 14, 329— 335. [Pg.929]

Figure Bl.22.4. Differential IR absorption spectra from a metal-oxide silicon field-effect transistor (MOSFET) as a fiinction of gate voltage (or inversion layer density, n, which is the parameter reported in the figure). Clear peaks are seen in these spectra for the 0-1, 0-2 and 0-3 inter-electric-field subband transitions that develop for charge carriers when confined to a narrow (<100 A) region near the oxide-semiconductor interface. The inset shows a schematic representation of the attenuated total reflection (ATR) arrangement used in these experiments. These data provide an example of the use of ATR IR spectroscopy for the probing of electronic states in semiconductor surfaces [44]-... Figure Bl.22.4. Differential IR absorption spectra from a metal-oxide silicon field-effect transistor (MOSFET) as a fiinction of gate voltage (or inversion layer density, n, which is the parameter reported in the figure). Clear peaks are seen in these spectra for the 0-1, 0-2 and 0-3 inter-electric-field subband transitions that develop for charge carriers when confined to a narrow (<100 A) region near the oxide-semiconductor interface. The inset shows a schematic representation of the attenuated total reflection (ATR) arrangement used in these experiments. These data provide an example of the use of ATR IR spectroscopy for the probing of electronic states in semiconductor surfaces [44]-...
Attenuated total reflectance (ATR) cell for use In Infrared spectroscopy. [Pg.393]

Attenuated total reflectance spectroscopy and reflection-absorption infrared spectroscopy... [Pg.64]

Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. Attenuated total redectance (atr) ftir spectroscopy is based on the principle of total internal redection (40). Methods based on internal redection in the uv and visible regions of the spectmm are also common in addition to those in the ir region. The implementation of internal redection in the ir region of the spectmm provides a means of obtaining ir spectra of surfaces or interfaces, thus providing moleculady-specific vibrational information. [Pg.286]

M. W. AT2rs1, Attenuated Total Reflectance Spectroscopy of Polymers Theory and Practice, American Chemical Society, Washington, D.C., 1996. [Pg.323]

XRF is closely related to the EPMA, energy-dispersive X-Ray Spectroscopy (EDS), and total reflection X-Ray Fluorescence (TRXF), which are described elsewhere in this encyclopedia. Brief comparisons between XRF and each of these three techniques are given below. [Pg.346]

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]

In order to characterize the surface regions of a sample that has been modified in some way, as is usually the case in adhesion-related investigations, some sort of a reflection experiment is required. Two types of experiments, attenuated total reflection (ATR) and reflection-absorption infrared spectroscopy (RAIR),... [Pg.244]

For on-bead analysis vibrational spectroscopy (IR-spectroscopy) can be employed attenuated total reflection is a method allowing fast and nondestructive on-bead analysis of small samples (single bead analysis) without significant sample preparation. Solid phase NMR is the method of choice if complex structural analysis is intended on the support. Spatially resolved analysis on the resin is possible with microscopic techniques. [Pg.383]

While electron or ion beam techniques can only be applied under ultra-high vacuum, optical techniques have no specific requirements concerning sample environment and are generally easier to use. The surface information which can be obtained is, however, quite different and mostly does not contain direct chemical information. While with infra-red attenuated total reflection spectroscopy (IR-ATR) a deep surface area with a typical depth of some micrometers is investigated, other techniques like phase-measurement interference microscopy (PMIM) have, due to interference effects, a much better surface sensitivity. PMIM is a very quick technique for surface roughness and homogeneity inspection with subnanometer resolution. [Pg.367]

In infra-red attenuated total reflection spectroscopy (IR-ATR) and grazing incidence reflection IR spectroscopy (IR-GIR) the evanescent wave of a totally... [Pg.367]

Surface composition and morphology of copolymeric systems and blends are usually studied by contact angle (wettability) and surface tension measurements and more recently by x-ray photoelectron spectroscopy (XPS or ESCA). Other techniques that are also used include surface sensitive FT-IR (e.g., Attenuated Total Reflectance, ATR, and Diffuse Reflectance, DR) and EDAX. Due to the nature of each of these techniques, they provide information on varying surface thicknesses, ranging from 5 to 50 A (contact angle and ESCA) to 20,000-30,000 A (ATR-IR and EDAX). Therefore, they can be used together to complement each other in studying the depth profiles of polymer surfaces. [Pg.69]

Adsorption phenomena from solutions onto sohd surfaces have been one of the important subjects in colloid and surface chemistry. Sophisticated application of adsorption has been demonstrated recently in the formation of self-assembhng monolayers and multilayers on various substrates [4,7], However, only a limited number of researchers have been devoted to the study of adsorption in binary hquid systems. The adsorption isotherm and colloidal stabihty measmement have been the main tools for these studies. The molecular level of characterization is needed to elucidate the phenomenon. We have employed the combination of smface forces measmement and Fomier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR) to study the preferential (selective) adsorption of alcohol (methanol, ethanol, and propanol) onto glass surfaces from their binary mixtures with cyclohexane. Om studies have demonstrated the cluster formation of alcohol adsorbed on the surfaces and the long-range attraction associated with such adsorption. We may call these clusters macroclusters, because the thickness of the adsorbed alcohol layer is about 15 mn, which is quite large compared to the size of the alcohol. The following describes the results for the ethanol-cycohexane mixtures [10],... [Pg.3]

Since solid-state reactions can easily be monitored by continuous measurement of spectra, it is easy to study the mechanism of the reactions. For this purpose, IR spectroscopy is the most useful, because IR spectra can be measured simply as Nujol mulls or directly for any mixture of solid-solid, solid-liquid, or liquid-liquid by using the ATP (attenuated total reflection) method. Some such examples of the mechanistic study are described. [Pg.16]

The large intrinsic birefringence of the sarcoplasmic reticulum [143] and the polarized attenuated total reflectance FTIR spectroscopy data obtained on oriented films of sarcoplasmic reticulum [144] indicate that a sizeable portion of the secondary structural elements are arranged perpendicularly to the plane of the membrane in a manner reminiscent to the structure of bacteriorhodopsin [145-148]. [Pg.68]

In another study, ATPase reconstituted into liposomes was analyzed by infrared attenuated total reflection spectroscopy and the secondary-structure elements of the molecule were determined from the spectra obtained by Fourier self-deconvolution [42]. Gratifyingly, essentially identical secondary-structure estimates for the ATPase were obtained by this entirely different approach, suggesting quite strongly that these secondary-structure estimates are reasonably accurate. Thus, any future models for the structure of the H -ATPase must take this information into account. [Pg.122]

A number of techniques have been employed that are capable of giving information about amorphous phases. These include infrared spectroscopy, especially the use of the attenuated total reflection (ATR) or Fourier transform (FT) techniques. They also include electron probe microanalysis, scanning electron microscopy, and nuclear magnetic resonance (NMR) spectroscopy. Nor are wet chemical methods to be neglected for they, too, form part of the armoury of methods that have been used to elucidate the chemistry and microstructure of these materials. [Pg.359]

Figure 6.16 Attenuated total reflection surface enhanced infrared reflection absorption spectroscopy (ATR-SEIRAS) spectra for the oxidation of 0.1 M HCOOH in 0.5 M H2SO4 on a polycrystaUine electrode. The bands at 2055 -2075 and 1800-1850 cm are assigned to linear- and bridge-bonded CO, whereas the band at 1323 cm corresponds to adsorbed formate. (Reproduced from Samjeske et al. [2006].)... Figure 6.16 Attenuated total reflection surface enhanced infrared reflection absorption spectroscopy (ATR-SEIRAS) spectra for the oxidation of 0.1 M HCOOH in 0.5 M H2SO4 on a polycrystaUine electrode. The bands at 2055 -2075 and 1800-1850 cm are assigned to linear- and bridge-bonded CO, whereas the band at 1323 cm corresponds to adsorbed formate. (Reproduced from Samjeske et al. [2006].)...
Heinen M, Jusys Z, Behm RJ. 2009. Reaction pathways analysis and reaction intermediate detection via simultaneous differential electrochemical mass spectrometry (DBMS) and attenuated total reflection Bourier transform infrared spectroscopy (ATR-BTIRS). In Vielstich W, Gasteiger HA, Yokokawa H, eds. Handbook of Buel Cells. Volume 5 Advances in Electrocatalysis. Chichester John Wiley Sons, Ltd., in press. [Pg.457]

Tewari, J. and Irudayaraj, J. (2004). Quantification of saccharides in multiple floral honeys using Fourier transform infrared microattenuated total reflectance spectroscopy. /. Agric. Food Chem. 52, 3237-3243. [Pg.135]


See other pages where Spectroscopy total reflectance is mentioned: [Pg.1780]    [Pg.1781]    [Pg.1784]    [Pg.515]    [Pg.253]    [Pg.353]    [Pg.289]    [Pg.517]    [Pg.358]    [Pg.362]    [Pg.873]    [Pg.115]    [Pg.236]    [Pg.10]    [Pg.95]    [Pg.187]    [Pg.275]    [Pg.414]    [Pg.539]    [Pg.107]   


SEARCH



Attenuated Total Infrared Internal Reflectance (ATR) Spectroscopy (Spectra-Tech)

Attenuated total internal reflection infrared spectroscopy

Attenuated total reflectance Fourier transform spectroscopy

Attenuated total reflectance Fourier transform-infrared spectroscopy

Attenuated total reflectance Fourier transformation infrared spectroscopy

Attenuated total reflectance Fourier transformed infrared spectroscopy

Attenuated total reflectance infrared spectroscopy

Attenuated total reflectance spectroscopy

Attenuated total reflectance surface-enhanced infrared absorption spectroscopy

Attenuated total reflectance-Fourier spectroscopy

Attenuated total reflection Fourier transform infrared spectroscopy , polymer

Attenuated total reflection infrared spectroscopy

Attenuated total reflection spectroscopy

Attenuated total reflection spectroscopy (ATR

Attenuated total reflection spectroscopy lipids

Attenuated total reflection spectroscopy polarization

Attenuated total reflection spectroscopy principle

Attenuated total reflection spectroscopy sample cells

Attenuated total reflection-Fourier transform infrared spectroscopy

Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR

Attenuated total reflection-Fourier transform spectroscopy)

Epoxy attenuated total reflection spectroscopy

Fourier transform infrared spectroscopy total reflection

In situ attenuated total reflectance infrared spectroscopy

Infrared spectroscopy attenuated total reflectance Fourier

Infrared spectroscopy attenuated total reflection technique

Infrared spectroscopy total internal reflection cell

Polarized attenuated total reflection infrared spectroscopy

Reflectance spectroscopy

Reflection spectroscopy

Reflectivity spectroscopy

Reflectivity total

Scanning Electrochemical Microscopy-Attenuated Total Reflection Spectroscopy

Time-resolved attenuated total reflectance spectroscopy

Total Internal Reflection Fluorescence (TIRF) Spectroscopy

Total Reflection X-ray Fluorescence Spectroscopy

Total internal reflection fluorescence spectroscopy

Total internal reflection intrinsic fluorescence spectroscopy

Total internal reflection spectroscopy

Total reflectance IR spectroscopy

Total reflection

© 2024 chempedia.info