Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy impulse

In laser-impulse experiments with chlorophenyldiazirine the carbene could be observed by UV spectroscopy. On addition of defined amounts of alkene the rate of cyclopropanation was measured directly. The rate constants with various alkenes were (lO moF s ) 1-hexene, 1.3 ( )-2-pentene, 34 2-methyl-2-butene, 77 2,3-dimethyl-2-butene, 130 (80JA7576>. [Pg.227]

In binary (e,2e) or electron momentum spectroscopy, an incoming electron collides with a molecule and two electrons leave the molecule. The measured differential cross section is proportional to the spherically averaged momentum density of the pertinent Dyson orbital within the plane-wave impulse approximation. A Dyson orbital v[/ t is defined by... [Pg.322]

All types of time evolution are present in dynamical solvation effects. It is difficult, and perhaps not convenient, to define a general formulation of the Hamiltonian which can be used to treat all the possible cases. It is better to treat separately more homogeneous families of phenomena. The usual classification into three main types adiabatic, impulsive and oscillatory, may be of some help. The time dependence of the phenomenon may remain in the solute, and this will be the main case in our survey, but also in the solvent in both cases the coupling will oblige us to consider the dynamic behaviour of the whole system. We shall limit ourselves here to a selection of phenomena which will be considered in the following contributions for which extensions of the basic equilibrium QM approach are used, mainly phenomena related to spectroscopy. Other phenomena will be considered in the next section. [Pg.16]

The isotropic moduli, particularly the initial bulk modulus and its pressure derivative, are key ingredients in specifying the mechanical equation of state. As noted above, determination of these properties from experimental hydrostatic compression data is difficult due to issues with acquisition of high precision at low pressures and particular sensitivity in the choice of equation of state fitting form to data below about one GPa. Alternative routes to this information at low pressures included impulsive stimulated light scattering (ISLS) and resonant ultrasound spectroscopy (RUS), which can in principle provide the complete elastic tensor (ISLS) and isotropic bulk and shear moduli (RUS). [Pg.316]

We shall conclude this chapter with a few speculative remarks on possible future developments of nonlinear IR spectroscopy on peptides and proteins. Up to now, we have demonstrated a detailed relationship between the known structure of a few model peptides and the excitonic system of coupled amide I vibrations and have proven the correctness of the excitonic coupling model (at least in principle). We have demonstrated two realizations of 2D-IR spectroscopy a frequency domain (incoherent) technique (Section IV.C) and a form of semi-impulsive method (Section IV.E), which from the experimental viewpoint is extremely simple. Other 2D methods, proposed recently by Mukamel and coworkers (47), would not pose any additional experimental difficulty. In the case of NMR, time domain Fourier transform (FT) methods have proven to be more sensitive by far as a result of the multiplex advantage, which compensates for the small population differences of spin transitions at room temperature. It was recently demonstrated that FT methods are just as advantageous in the infrared regime, although one has to measure electric fields rather than intensities, which cannot be done directly by an electric field detector but requires heterodyned echoes or spectral interferometry (146). Future work will have to explore which experimental technique is most powerful and reliable. [Pg.348]

In impulsive multidimensional (1VD) Raman spectroscopy a sample is excited by a train of N pairs of optical pulses, which prepare a wavepacket of quantum states. This wavepacket is probed by the scattering of the probe pulse. The electronically off-resonant pulses interact with the electronic polarizability, which depends parametrically on the vibrational coordinates (19), and the signal is related to the 2N + I order nonlinear response (18). Seventh-order three-dimensional (3D) coherent Raman scattering, technique has been proposed by Loring and Mukamel (20) and reported in Refs. 12 and 21. Fifth-order two-dimensional (2D) Raman spectroscopy, proposed later by Tanimura and Mukamel (22), had triggered extensive experimental (23-28) and theoretical (13,25,29-38) activity. Raman techniques have been reviewed recently (12,13) and will not be discussed here. [Pg.362]

Since 2D PE spectroscopy is a femtosecond impulsive technique, it can be used for real-time study of early events in protein folding, which are the focus of extensive effort (55). 2D NMR spectroscopies (10) are limited to much slower time scales (ms), thus ID IR (4-8) and luminescence (56,57) spectroscopies are employed for following faster conformational changes. 2D IR spectroscopy should provide more detailed information. [Pg.389]

Yan Y-X, Nelson KA. Impulsive stimulated light scattering, n. Comparison to frequency-domain light-scattering spectroscopy. J Chem Phys 1987 87 6257-6265. [Pg.517]

Dhar L, Rogers JA, Nelson KA. Time-resolved vibrational spectroscopy in the impulsive limit. Chem Rev 1994 94 157-193. [Pg.517]

The disadvantage of the method is that as a rule it requires significant modification of polymer chain as a result of introduction of essential number of spin markers. Introduction of markers may change polymer properties. However, this disadvantage may be removed by the use of modem impulse methods of EPR-spectroscopy (see for example [14,15]) which are more sensitive to dipole-dipole interaction of uncoupled electrons than traditional methods of EPR-spectroscopy. [Pg.133]

Electron momentum spectroscopy (McCarthy and Weigold, 1991) is based on ionisation experiments at incident energies of the order of 1000 eV, where the plane-wave impulse approximation is roughly valid. The differential cross section is measured for each ion state over a range of ion recoil momentum p from about 0 to 2.5 a.u. Noncoplanar-symmetric kinematics is the usual mode. In such experiments the distorted-wave impulse approximation turns out to be a sufficiently-refined theory. Checks of this based on a generally-valid sum rule will be described. [Pg.289]

Fig. 11.4 illustrates the momentum profiles of the other ion states observed in a later experiment with better energy resolution than that of fig. 11.2. All these states have momentum profiles of essentially the same shape. They are thus identified as states of the same orbital manifold, for which the experiment obeys the criterion for the validity of the weak-coupling binary-encounter approximation. Details of electron momentum spectroscopy depend on the approximation adopted for the probe amplitude of (11.1). The 3s Hartree—Fock momentum profiles in the plane-wave impulse approximation identify the 3s manifold. However, the approximation underestimates the high-momentum profile. [Pg.296]

The distorted-wave impulse approximation using Hartree—Fock orbitals is confirmed in every detail by fig. 11.5, which shows momentum profiles for argon at =1500 eV. The whole experiment is normalised to the distorted-wave impulse approximation at the 3p peak. It represents the remainder of the confirmation in this case of the whole procedure of electron momentum spectroscopy. The Hartree—Fock orbitals give complete agreement with experiment for two manifolds, 3p and 3s. The spectroscopic factor Si5.76(3p) is measured as 1, since no further states of the 3p manifold are identified. Later experiments give 0.95 and this is the value used for normalisation. The approximation describes the momentum-profile shape for the first member of the 3s manifold at 29.3 eV within experimental error. The shape for the manifold sum of cross sections agrees and its... [Pg.296]

Measixrement techniques Bridge mechanical generator Bridge electronic generator Impulse method, oscillograph, Laplace transform Analogue impedance measurement, potentiostat (AC + DC) Digital impedance measurement, cormection with computer Local electrochemical impedance spectroscopy (LEIS)... [Pg.3]


See other pages where Spectroscopy impulse is mentioned: [Pg.264]    [Pg.1196]    [Pg.1990]    [Pg.461]    [Pg.114]    [Pg.52]    [Pg.533]    [Pg.94]    [Pg.171]    [Pg.197]    [Pg.180]    [Pg.49]    [Pg.780]    [Pg.366]    [Pg.289]    [Pg.340]    [Pg.449]    [Pg.523]    [Pg.216]    [Pg.6383]    [Pg.328]    [Pg.169]    [Pg.69]    [Pg.321]    [Pg.93]    [Pg.319]    [Pg.284]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Impulse

Impulsive

Impulsiveness

© 2024 chempedia.info