Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopic studies, lead photoelectron spectroscopy

If high temperatures eventually lead to an almost equal population of the ground and excited states of spectroscopically active structure elements, their absorption and emission may be quite weak, particularly if relaxation processes between these states are slow. The spectroscopic methods covered in Table 16-1 are numerous and not equally suited for the study of solid state kinetics. The number of methods increases considerably if we include particle radiation (electrons, neutrons, protons, atoms, or ions). We note that the output radiation is not necessarily of the same type as the input radiation (e.g., in photoelectron spectroscopy). Therefore, we have to restrict this discussion to some relevant methods and examples which demonstrate the applicability of in-situ spectroscopy to kinetic investigations at high temperature. Let us begin with nuclear spectroscopies in which nuclear energy levels are probed. Later we will turn to those methods in which electronic states are involved (e.g., UV, VIS, and IR spectroscopies). [Pg.404]

Lead is not spectroscopically silent. The absorption spectroscopy, photoelectron spectroscopy, and NMR spectroscopy of Pb(II) compounds have all been extensively studied. These techniques not only provide useful insights into the electronic structure and stmctures of Pb(II) compounds, but have also proven useful in the characterization of lead coordination environments in complex samples (e.g., samples of biological or environmental origin). [Pg.123]

While many spectroscopic studies have been published on dimers, the most extensive polymer studies have been with Ag, Na, and Cu clusters. As might be expected much of the interest in silver relates to the photographic process where it appears that a four-atom silver cluster on a silver halide surface leads to reduction by developer, whereas a three-atom cluster does not. The electron spin resonance (ESR) spectrum of sodium in argon confirms that the trimer is covalently bonded and not an equilateral triangle. Ultraviolet photoelectron spectroscopy (UPS) of Cu clusters indicates that the d band is separate from the s band, unlike in the bulk or in the Xa calculations mentioned earlier. [Pg.265]

In a carbon-supported metal electrocatalyst, the electronic interaction between metal and carbon support has a significant effect on its electrochemical performance [4], For carbon-supported Pt electrocatalyst, carbon could accelerate the electron transfer at the electrode-electrolyte interface, leading to an accelerated electrode process. Typically, the electrons are transferred from platinum clusters to the oxygen species on the surfece of a carbon support material and the chemical bond formation or the charge transfer process occurs at the contacting phase, which is considered to be beneficial to the enhancement of the catalytic properties in terms of activity and stability of the electrocatalysts. Experimentally, the investigation into the electron interaction between metal catalyst and support materials could be realized by various physical, spectroscopic, and electrochemical approaches. The electron donation behavior of Pt to carbon support materials has been demonstrated by the electron spin resonance (ESR) X-ray photoelectron spectroscopy (XPS) studies, with the conclusion that the electron interaction between Pt and carbon support depends on their Fermi level of electrons. It is considered that the electronic structure change of Pt on carbon support induced by the electron interaction has positive effect toward the enhancement of the catalytic properties and the improvement of the stability of the electrocatalyst system. However, the exact quantitative relationship between electronic interaction of carbon-supported catalyst and its electrocatalytic performance is still not yet fully established [4]. [Pg.58]


See other pages where Spectroscopic studies, lead photoelectron spectroscopy is mentioned: [Pg.332]    [Pg.218]    [Pg.256]    [Pg.1623]    [Pg.313]    [Pg.270]    [Pg.250]    [Pg.1]    [Pg.587]    [Pg.23]   
See also in sourсe #XX -- [ Pg.24 , Pg.25 , Pg.26 , Pg.27 ]




SEARCH



Lead photoelectron spectroscopy

Lead spectroscopic studies

Photoelectron spectroscop

Photoelectron spectroscopic studies

Spectroscopic Spectroscopy

Spectroscopic studies

© 2024 chempedia.info