Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopic Methods Nuclear Spectroscopy

Atomic subsystem transitions nuclear spins electron spins rotation vibration [Pg.403]

Primary quantity measured local interactions (magnetic, electric field gradient) atomic, molecular potentials [Pg.403]

Kinetic parameter detected diffusional atomic motions vibrational frequencies [Pg.403]

If high temperatures eventually lead to an almost equal population of the ground and excited states of spectroscopically active structure elements, their absorption and emission may be quite weak, particularly if relaxation processes between these states are slow. The spectroscopic methods covered in Table 16-1 are numerous and not equally suited for the study of solid state kinetics. The number of methods increases considerably if we include particle radiation (electrons, neutrons, protons, atoms, or ions). We note that the output radiation is not necessarily of the same type as the input radiation (e.g., in photoelectron spectroscopy). Therefore, we have to restrict this discussion to some relevant methods and examples which demonstrate the applicability of in-situ spectroscopy to kinetic investigations at high temperature. Let us begin with nuclear spectroscopies in which nuclear energy levels are probed. Later we will turn to those methods in which electronic states are involved (e.g., UV, VIS, and IR spectroscopies). [Pg.404]


Spectroscopic methods Nuclear magnetic resonance spectroscopy (NMR) ( H, 13C, and most other nucleii)... [Pg.212]

Other spectroscopic methods such as infrared (ir), and nuclear magnetic resonance (nmr), circular dichroism (cd), and mass spectrometry (ms) are invaluable tools for identification and stmcture elucidation. Nmr spectroscopy allows for geometric assignment of the carbon—carbon double bonds, as well as relative stereochemistry of ring substituents. These spectroscopic methods coupled with traditional chemical derivatization techniques provide the framework by which new carotenoids are identified and characterized (16,17). [Pg.97]

The presence of iminium salts can be detected by chemical means or by spectroscopic methods. The chemical means of detecting iminium salts are reactions with nucleophiles and are the subject of this review. The spectroscopic methods are more useful for rapid identification because with the large number of model compounds available now the spectroscopic methods are fast and reliable. The two methods that are used primarily are infrared and nuclear magnetic resonance spectroscopy. Some attempts have been made to determine the presence of iminium salts by ultraviolet spectroscopy, but these are not definitive as yet (14,25). [Pg.176]

Porphyrin is a multi-detectable molecule, that is, a number of its properties are detectable by many physical methods. Not only the most popular nuclear magnetic resonance and light absorption and emission spectroscopic methods, but also the electron spin resonance method for paramagnetic metallopor-phyrins and Mossbauer spectroscopy for iron and tin porphyrins are frequently used to estimate the electronic structure of porphyrins. By using these multi-detectable properties of the porphyrins of CPOs, a novel physical phenomenon is expected to be found. In particular, the topology of the cyclic shape is an ideal one-dimensional state of the materials used in quantum physics [ 16]. The concept of aromaticity found in fuUerenes, spherical aromaticity, will be revised using TT-conjugated CPOs [17]. [Pg.70]

Up to the present time, the Mossbauer effect has been observed with nearly 100 nuclear transitions in about 80 nuclides distributed over 43 elements (cf. Fig. 1.1). Of course, as with many other spectroscopic methods, not all of these transitions are suitable for actual studies, for reasons which we shall discuss later. Nearly 20 elements have proved to be suitable for practical applications. It is the purpose of the present book to deal only with Mossbauer active transition elements (Fe, Ni, Zn, Tc, Ru, Hf, Ta, W, (Re), Os, Ir, Pt, Au, Hg). A great deal of space will be devoted to the spectroscopy of Fe, which is by far the most extensively used Mossbauer nuclide of all. We will not discuss the many thousands of reports on Fe... [Pg.3]

Nuclear magnetic resonance spectroscopy is a technique that, based on the magnetic properties of nuclei, reveals information on the position of specific atoms within molecules. Other spectroscopic methods are based on the detection of fluorescence and phosphorescence (forms of light emission due to the selective excitation of atoms by previously absorbed electromagnetic radiation, rather than to the temperature of the emitter) to unveil information about the nature and the relative amount specific atoms in matter. [Pg.60]

As will be explained in Chapter 7, spectroscopic methods are a powerful way to probe the active sites of the hydrogenases. Often spectroscopic methods are greatly enhanced by judicious enrichment of the active sites with a stable isotope. For example, Mossbauer spectroscopy detects only the isotope Fe, which is present at only 2.2 per cent abundance in natural iron. Hydrogen atoms, which cannot be seen by X-ray diffraction for example, can be studied by EPR and ENDOR spectroscopy, which exploit the hyperfine interactions between the unpaired electron spin and nuclear spins. More detailed information has been derived from hyperfine interactions with nuclei such as Ni and Se, in the active sites. In FTTR spec-... [Pg.100]

Infrared (IR) spectroscopy was the first modern spectroscopic method which became available to chemists for use in the identification of the structure of organic compounds. Not only is IR spectroscopy useful in determining which functional groups are present in a molecule, but also with more careful analysis of the spectrum, additional structural details can be obtained. For example, it is possible to determine whether an alkene is cis or trans. With the advent of nuclear magnetic resonance (NMR) spectroscopy, IR spectroscopy became used to a lesser extent in structural identification. This is because NMR spectra typically are more easily interpreted than are IR spectra. However, there was a renewed interest in IR spectroscopy in the late 1970s for the identification of highly unstable molecules. Concurrent with this renewed interest were advances in computational chemistry which allowed, for the first time, the actual computation of IR spectra of a molecular system with reasonable accuracy. This chapter describes how the confluence of a new experimental technique with that of improved computational methods led to a major advance in the structural identification of highly unstable molecules and reactive intermediates. [Pg.148]

In addition, any rational approach to peptide hormone and neurotransmitter design must ultimately depend on the application of physical-chemical principles of conformation and structure, the use of various spectroscopic methods (especially nuclear magnetic resonance, circular dlchrolsm, and Raman spectroscopies. X-ray analysis where possible, etc.), and an understanding of the nature of a hormone-receptor Interaction In physical-chemical terms. Here again the use of conformatlonally restricted peptide structures Is critical (, 2. Recently we have... [Pg.12]

Nuclei provide a large number of spectroscopic probes for the investigation of solid state reaction kinetics. At the same time these probes allow us to look into the atomic dynamics under in-situ conditions. However, the experimental and theoretical methods needed to obtain relevant results in chemical kinetics, and particularly in atomic dynamics, are rather laborious. Due to characteristic hyperfine interactions, nuclear spectroscopies can, in principle, identify atomic particles and furthermore distinguish between different SE s of the same chemical component on different lattice sites. In addition to the analytical aspect of these techniques, nuclear spectroscopy informs about the microscopic motion of the nuclear probes. In Table 16-2 the time windows for the different methods are outlined. [Pg.404]

Nowadays, the chromatographic, electrophoretic, spectroscopic, biosensor, and membrane methods are the ones most commonly applied (Fig. 3) [19-23,42,43], Among the spectroscopic methods, investigators use optical rotation measurements, nuclear magnetic resonance (NMR) spectroscopy, and infrared (IR) spectroscopy. The latter, as differential scanning calorimetry (DSC), can... [Pg.25]

In search of new natural products, crude extracts are classically subjected to multi-step work-up and isolation procedures which include various separation methods (besides HPLC, for instance, column, gel or counter-current chromatography) in order to obtain pure compounds which are then structurally elucidated by using off-line spectroscopic methods such as nuclear magnetic resonance spectroscopy and mass spectrometry. [Pg.111]

Spectroscopic methods like infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), and mass spectrometry (MS) are described in other chapters of this textbook. [Pg.377]


See other pages where Spectroscopic Methods Nuclear Spectroscopy is mentioned: [Pg.402]    [Pg.405]    [Pg.407]    [Pg.409]    [Pg.411]    [Pg.402]    [Pg.405]    [Pg.407]    [Pg.409]    [Pg.411]    [Pg.53]    [Pg.332]    [Pg.509]    [Pg.391]    [Pg.348]    [Pg.2]    [Pg.569]    [Pg.157]    [Pg.385]    [Pg.384]    [Pg.3]    [Pg.574]    [Pg.1192]    [Pg.528]    [Pg.4]    [Pg.691]    [Pg.335]    [Pg.5]    [Pg.4]    [Pg.132]    [Pg.268]    [Pg.457]    [Pg.293]    [Pg.131]    [Pg.199]    [Pg.509]    [Pg.391]    [Pg.30]    [Pg.260]    [Pg.151]   


SEARCH



Nuclear methods

Nuclear spectroscopic

Spectroscopic Spectroscopy

Spectroscopic methods

Spectroscopic methods spectroscopy

Spectroscopy method

© 2024 chempedia.info