Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ion/molecule chemistry

Tlie best place to start for a detailed look at the instrumentation for the study of ion-molecule chemistry. [Pg.829]

Time-of-flight mass spectrometers have been used as detectors in a wider variety of experiments tlian any other mass spectrometer. This is especially true of spectroscopic applications, many of which are discussed in this encyclopedia. Unlike the other instruments described in this chapter, the TOP mass spectrometer is usually used for one purpose, to acquire the mass spectrum of a compound. They caimot generally be used for the kinds of ion-molecule chemistry discussed in this chapter, or structural characterization experiments such as collision-induced dissociation. Plowever, they are easily used as detectors for spectroscopic applications such as multi-photoionization (for the spectroscopy of molecular excited states) [38], zero kinetic energy electron spectroscopy [39] (ZEKE, for the precise measurement of ionization energies) and comcidence measurements (such as photoelectron-photoion coincidence spectroscopy [40] for the measurement of ion fragmentation breakdown diagrams). [Pg.1354]

Principles and Characteristics Ion mobility spectrometry (IMS) is an instrumental technique for the detection and characterisation of organic compounds as vapours at atmospheric pressure. Modern analytical IMS was created at the end of the 1960s from studies on ion-molecule chemistry with mass spectrometers and from ionisation detectors for vapour monitoring. An ion mobility spectrometer (or plasma chromatograph in the original termininology) was first produced in 1970 [272],... [Pg.415]

In addition to these problems, there are specific chemical problems, raised by our uncertain knowledge of the gas-phase chemistry and alluded to in the previous discussion of ion-molecule chemistry, which make the gas-phase model results highly uncertain in many instances. These are now discussed in more detail, in the hope that they can be alleviated by future laboratory and theoretical work. [Pg.20]

A second major class of ion-molecule reactions that is relatively poorly studied consists of systems involving very unsaturated hydrocarbon neutrals, especially radicals. The unsaturated nature of the organic chemistry in interstellar clouds leads to sizeable abundances of very unsaturated hydrocarbons such as the polyacetylenes HC H, the carbenes H2C , the radicals C H, and the clusters Cn. Although some work has been done on the chemistry of such species, much of the relevant ion-molecule chemistry involving ions such as C+, CH3, and even C2H2 must be guessed at from generalizations based on a small number of studied systems. [Pg.31]

ION-MOLECULE CHEMISTRY IN INTERSTELLAR CLOUDS SUCCESSES AND PROBLEMS Eric Herbst 1... [Pg.372]

A recent success in the detection of H species has been that of the molecular ion H3+. All of the models of ion-molecule chemistry in hydrogen-dominated regions are controlled by reactions of H3+ but until recently the H2+ molecular ion had not been detected. However, the modes of vibration of H3"1" provide for an allowed IR transition at 3.668 pin used for its detection. These ro-vibrational transitions have now been observed in a number of places, including the interstellar medium and in the aurorae of Jupiter. Not all astronomical detection and identification problems have been solved, however, and the most annoying and compelling of these is the problem of diffuse interstellar bands. [Pg.79]

The improvement in the rate of chemical reactions is reversed when temperature is cooler and at temperatures as low as 30 K (a warm comer of TMC-1) the exponential term is of order 10-279 and nearly all reactions between neutral species are frozen out at 50 K. Two important classes of reactions survive radical-radical chemistry and ion-molecule chemistry. The importance of these different reaction types will become apparent later with the construction of the models of molecular clouds. For the moment, however, laboratory measurements of reactions in radicals such as C2H have shown that even with temperatures as low as 15 K the rate constant for reactions of the type ... [Pg.130]

The choice of chemical networks is complicated and even for simple clouds such as TMC the species list is 218 species, with 2747 chemical reactions linking them. Network reduction mechanisms have been employed to reduce the number of reactions but preserve the chemical composition of at least the major species. All models must include simple ion-molecule chemistry with UV and cosmic ray ionisation initiation reactions, as shown in Figure 5.20. [Pg.146]

In summary, preliminary experiments have demonstrated that the efficiency and outcome of electron ionization is influenced by molecular orientation. That is, the magnitude of the electron impact ionization cross section depends on the spatial orientation of the molecule widi respect to the electron projectile. The ionization efficiency is lowest for electron impact on the negative end of the molecular dipole. In addition, the mass spectrum is orientation-dependent for example, in the ionization of CH3CI the ratio CHjCriCHj depends on the molecular orientation. There are both similarities in and differences between the effect of orientation on electron transfer (as an elementary step in the harpoon mechanism) and electron impact ionization, but there is a substantial effect in both cases. It seems likely that other types of particle interactions, for example, free-radical chemistry and ion-molecule chemistry, may also exhibit a dependence on relative spatial orientation. The information emerging from these studies should contribute one more perspective to our view of particle interactions and eventually to a deeper understanding of complex chemical and biological reaction mechanisms. [Pg.37]

Although thermochemistry, in the form of p/f s, redox potentials, and so forth, is important in the analysis of solution phase reactivity, it is a critical tool when gas phase ion-molecule chemistry is being dealt with. This is because of a serious limitation in all current instrumentation utilized in the study of such reactions all the flasks leak. None of the current techniques are perfect in trapping the ions, with... [Pg.196]


See other pages where Ion/molecule chemistry is mentioned: [Pg.383]    [Pg.3]    [Pg.5]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.23]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.32]    [Pg.33]    [Pg.35]    [Pg.37]    [Pg.38]    [Pg.39]    [Pg.41]    [Pg.43]    [Pg.45]    [Pg.47]    [Pg.129]    [Pg.320]    [Pg.366]    [Pg.155]    [Pg.187]    [Pg.181]    [Pg.193]    [Pg.195]   


SEARCH



Ion molecule

Ion-molecule reactions / chemistry

© 2024 chempedia.info