Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sorption Penetrant

To obtain a stable effect of hydrophobicity, the cloth should be thoroughly cleaned and prepared, because natural fats and size interfere with the uniform distribution of the finishing film. Silicone film on fibre reduces its sorption, penetration of moisture into the fibre and thus reduces the amount of moisture sorbed by the fibre. [Pg.237]

Eor a food container, the amount of sorption could be estimated in the following way. Eor simple diffusion the concentration in the polymer at the food surface could be estimated with equation 3. This would require a knowledge of the partial pressure of the flavor in the food. This is not always available, but methods exist for estimating this when the food matrix is water-dorninated. The concentration in the polymer at the depth of penetration is zero. Hence the average concentration C is as from equation 9. [Pg.492]

It is clear that such a surface offers a wide range of sorption and displacement processes that can take place between the solute and the stationary phase surface. Due to the bi-layer formation there are three different surfaces on which a molecule can interact by sorption and three different surfaces from which molecules of solvent can be displaced and allow the solute molecule to penetrate to the next layer. During a chromatographic separation under these circumstances, all the alternatives are possible. Nevertheless, depending on the magnitude of the forces between the solute molecule and the molecules in each layer, it is likely that one particular type of interaction will dominate. The various types of interaction are included in Figure 11. [Pg.100]

Water molecules combine the tendency to cluster, craze and plasticize the epoxy matrices with the characteristic of easily diffusion in the polymer1 10). The morphology of the thermoset may be adversaly influenced by the presence of the sorbed moisture. The diffusion of the water in glassy polymers able to link the penetrant molecules is, therefore, characterized by various mechanisms of sorption which may be isolated giving useful information on the polymer fine structure. [Pg.191]

As a consequence, the overall penetrant uptake cannot be used to get direct informations on the degree of plasticization, due to the multiplicity of the polymer-diluent interactions. The same amount of sorbed water may differently depress the glass transition temperature of systems having different thermal expansion coefficients, hydrogen bond capacity or characterized by a nodular structure that can be easily crazed in presence of sorbed water. The sorption modes, the models used to describe them and the mechanisms of plasticization are presented in the following discussion. [Pg.191]

The overall sorption value tends to decrease with the addition of the nanoclays. The decrease is maximum for the unmodified-clay-fiUed sample. As the ternperamre of swelling increases, the penetrant uptake increases in all the systems (Table 2.5). The rate of increase of solvent uptake is slower for the unmodified-clay-filled sample compared to the modified one. From Table 2.5 it can be seen that the values are higher for THE compared to MEK in every composite system. The higher sorption can be explained from the difference in solubility parameter of solvent and rubber (9 — 99 and polarity. The solubility parameter value of MEK, THE, and the mbber is 19.8, 18.6, and 14.8 MPa, respectively. This difference is lower (3.8 MPa ) in the case of THE than that of MEK (5.0 MPa ). [Pg.41]

This preservative is comparatively new to ophthalmic preparations and is a polymeric quaternary ammonium germicide. Its advantage over other quaternary ammonium seems to be its inability to penetrate ocular tissues, especially the cornea. It has been used at concentrations of 0.001-0.01% in contact lens solutions as well as dry eye products. At clinically effective levels of preservative, POLYQUAD is approximately 10 times less toxic than benzalkonium chloride [87,137], Various in vitro tests and in vivo evaluations substantiate the safety of this compound [137,141,142], This preservative has been extremely useful for soft contact lens solutions because it has the least propensity to adsorb onto or absorb into these lenses, and it has a practically nonexistent potential for sensitization. Its ad-sorption/absorption with high water and high ionic lenses can be resolved by carefully balancing formulation components [143],... [Pg.434]

A typical sorption experiment involves exposing a polymer sample, initially at an equilibrium penetrant concentration of c to a bathing penetrant concentration of Ci. The weight gain or loss is then measured as a function of time. The term sorption used in this context includes both absorption and desorption. The sorption is of the integral type if c° = 0 in the case of absorption or if cf = 0 in the case of desorption. Details of the experimental setup for the sorption measurement are discussed elsewhere [4],... [Pg.461]

For a classical diffusion process, Fickian is often the term used to describe the kinetics of transport. In polymer-penetrant systems where the diffusion is concentration-dependent, the term Fickian warrants clarification. The result of a sorption experiment is usually presented on a normalized time scale, i.e., by plotting M,/M versus tll2/L. This is called the reduced sorption curve. The features of the Fickian sorption process, based on Crank s extensive mathematical analysis of Eq. (3) with various functional dependencies of D(c0, are discussed in detail by Crank [5], The major characteristics are... [Pg.462]

Diffusion of small molecular penetrants in polymers often assumes Fickian characteristics at temperatures above Tg of the system. As such, classical diffusion theory is sufficient for describing the mass transport, and a mutual diffusion coefficient can be determined unambiguously by sorption and permeation methods. For a penetrant molecule of a size comparable to that of the monomeric unit of a polymer, diffusion requires cooperative movement of several monomeric units. The mobility of the polymer chains thus controls the rate of diffusion, and factors affecting the chain mobility will also influence the diffusion coefficient. The key factors here are temperature and concentration. Increasing temperature enhances the Brownian motion of the polymer segments the effect is to weaken the interaction between chains and thus increase the interchain distance. A similar effect can be expected upon the addition of a small molecular penetrant. [Pg.464]

JC Wu, NA Peppas. Modeling of penetrant diffusion in glassy polymers with an integral sorption Deborah number. J Polym Sci Polym Phys Ed 31 1503-1518,... [Pg.552]

JX Li. Case II sorption in glassy polymers Penetration kinetics. PhD Dissertation, University of Toronto, Toronto, Canada, 1998. [Pg.552]

Micro-emulsion formulations of cationic softeners are available and are claimed to have superior fibre penetration properties [484]. Figure 10.59 shows the sorption of a micro-... [Pg.253]

PMMA) film is quenched by permeation of methyl ethyl ketone (MEK), a good solvent for PMMA. A steady-state MEK concentration profile has been estimated from quenching data with existing sorption and light scattering data. The profile contains all the features of Case II diffusion the Fickian precursor, the solvent front, and the plateau region. However, the solvent front is not so steep as those observed in systems where penetrant diffusion is much slower. [Pg.385]

Permeabilities measured for pure gases can serve as a rough guide for selection of membrane materials. For design, data must be obtained on gas mixtures, where selectivities are often found to be much lower than those calculated from pure-component measurements. This effect is often due to plasticisation of the membrane by sorption of the most soluble component of the gas. This allows easier penetration by the less-permeable components. The problem of concentration polarisation, which is often encountered in small-scale flow tests, may also be responsible. Concentration polarisation results when the retention time of the gas in contact with the membrane is long. This allows substantial depletion of the most permeable component on the feed side of the membrane. The membrane-surface concentration of that component, and therefore its flux through the membrane, decreases. [Pg.108]

The immobilization of dissolved chemical species by adsorption and ion exchange onto mineral surfaces is an important process affecting both natural and environmentally perturbed geochemical systems. However, sorption of even chemically simple alkali elements such as Cs and Sr onto common rocks often does not achieve equilibrium nor is experimentally reversible (l). Penetration or diffusion of sorbed species into the underlying matrix has been proposed as a concurrent non-equilibration process (2). However, matrix or solid state diffusion is most often considered extremely slow at ambient temperature based on extrapolated data from high tem-... [Pg.587]

Mass fluxes of alkali elements transported across the solid-solution interfaces were calculated from measured decreases in solution and from known surface areas and mineral-to-solution weight-to-volume ratios. Relative rates of Cs uptake by feldspar and obsidian in the batch experiments are illustrated in Figure 1. After initial uptake due to surface sorption, little additional Cs is removed from solution in contact with the feldspars. In contrast, parabolic uptake of Cs by obsidian continues throughout the reaction period indicating a lack of sorption equilibrium and the possibility of Cs penetration into the glass surface. [Pg.588]


See other pages where Sorption Penetrant is mentioned: [Pg.438]    [Pg.438]    [Pg.2]    [Pg.269]    [Pg.272]    [Pg.299]    [Pg.489]    [Pg.189]    [Pg.192]    [Pg.193]    [Pg.196]    [Pg.202]    [Pg.202]    [Pg.66]    [Pg.172]    [Pg.203]    [Pg.212]    [Pg.315]    [Pg.473]    [Pg.474]    [Pg.524]    [Pg.524]    [Pg.455]    [Pg.195]    [Pg.417]    [Pg.408]    [Pg.51]    [Pg.400]    [Pg.468]    [Pg.214]    [Pg.107]    [Pg.155]    [Pg.222]    [Pg.51]    [Pg.132]   
See also in sourсe #XX -- [ Pg.136 ]




SEARCH



Sorption in membranes competition between penetrants

© 2024 chempedia.info