Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvents acidity and basicity

As outlined in Section 1.3, the solvent acidity and basicity have a significant influence on the reactions and equilibria in solutions. In particular, differences in reactions or equilibria among the solvents of higher permittivities are often caused by differences in solvent acidity and/or basicity. Because of the importance of solvent acidity and basicity, various empirical parameters have been proposed in order to express them quantitatively [1, 2]. Examples of the solvent acidity scales are Kosower s Z-values [8], Dimroth and Reichard s Er scale [1, 9], Mayer, Gutmann and Gergefs acceptor number (AN) [10, 11], and Taft and Kalmefs a parameter [12]. On the other hand, examples of the solvent basicity scales are Gut-... [Pg.16]

Chemical reactions in solutions are often affected drastically by the solvents used. The main objective of this book is to correlate the properties of solvents and the solvent effects on various chemical processes relevant to electrochemistry. The most important solvent properties in considering solvent effects are the solvent permittivity and the solvent acidity and basicity. If the permittivity of one solvent is high (er>30) and that of the other is low (er<10), the difference in a chemical process... [Pg.24]

Table 4.10 Empirical Parameters for Solvent Acidity and Basicity... Table 4.10 Empirical Parameters for Solvent Acidity and Basicity...
Table 4.11 Analysis of the Dependence of the Gibbs Energy of Transfer of 1-1 Electrolytes [36, 37] on Solvent Acidity and Basicity (Equation (4.9.8))... Table 4.11 Analysis of the Dependence of the Gibbs Energy of Transfer of 1-1 Electrolytes [36, 37] on Solvent Acidity and Basicity (Equation (4.9.8))...
Since the range over which AN and DN vary depends on the solvents chosen in the study, the relative importance of solvent acidity and basicity in determining the Gibbs energy of transfer is not easily assessed. [Pg.197]

By calculating relative partial regression coefficients, the role of solvent acidity and basicity in determining the thermodynamic quantity can be clearly seen [50]. In order to do this, one must estimate the variance for the independent and dependent variable involved in the multiparameter analysis. For the parameter Q, the variance is defined as... [Pg.197]

The parameters and P are now normalized to the same scale so that their relative values indicate the relative importance of solvent acidity and basicity in the given analysis. A more direct way of assessing this importance is in terms of relative partial regression coefficients % and which are defined as follows ... [Pg.197]

In conclusion, solvent acidity and basicity are useful parameters for the interpretation of solvent effects related to the solvation of electrolytes in polar media. This role demonstrates the importance of the chemical nature of the interaction between the ion and solvent molecule. Chemical interactions cannot be rationalized simply in terms of concepts from electrostatics based on point charges and... [Pg.198]

Determine the relative contributions of solvent acidity and basicity to the observed variation in AtrG°. Compare the fit with the above equation to a simple linear fit involving the more important parameter. Is the addition of the second parameter justified ... [Pg.203]

Polar solvents may interact strongly with a mineral oxide surface. In principle, the adsorption of die solvent must be considered. Claesson [13] studied the adsorption of fatty acids by sihca from solvents of various polarities. The results show that polar solvents compete with the solute for available sites on the surface, while nonpolar solvents show little competition. The polarity of the solvent is often determined from the measured dielectric properties. Krishnakumar and Somasundaran [13] studied surfactant adsorption on to silica and alumina from solvents with various dielectric properties. The aim of the study was to look at the effect of adsorbent and smfactant acidities and solvent polarity on the adsorption properties of the surfactant molecules. They used anionic and cationic surfactants as adsorption probes. The results show that polar interactions control the adsorption from solvents of low dielectric properties while hydrocarbon chain interactions with the surface play an important role in determining adsorption from solvents of higher dielectric properties. It was also found that an acidic surfactant interacts strongly with a basic adsorbent, and vice versa. One should be aware that the polarity of a molecule as measmed from the dielechic properties is not always eorrelated with the ability of the molecules to form ion pairs. For example, dimethylformamide and nihomethane have almost equal dielechic constants. However, the extent of ion pairing in nihomethane is much greater than that in dimethylformamide. Thus, the solvent acidity and basicity are the physical properties which can best characterize the ability of the solvent to compete with the solute for available sites on the mineral surface. [Pg.310]

When we use any substance as a solvent for a protonic acid, the acidic and basic species produced by dissociation of the solvent molecules determine the limits of acidity or basicity in that solvent. Thus, in water, we cannot have any substance or species more basic than OH or more acidic than H30 in liquid ammonia, the limiting basic entity is NHf, the acidic is NH4. Many common inorganic acids, for example HCl, HNO3, H2SO4 are all equally strong in water because their strengths are levelled to that of the solvent species Only by putting them into a more acidic... [Pg.87]

PVDF-based microporous filters are in use at wineries, dairies, and electrocoating plants, as well as in water purification, biochemistry, and medical devices. Recently developed nanoselective filtration using PVDF membranes is 10 times more effective than conventional ultrafiltration (UF) for removing vimses from protein products of human or animal cell fermentations (218). PVDF protein-sequencing membranes are suitable for electroblotting procedures in protein research, or for analyzing the phosphoamino content in proteins under acidic and basic conditions or in solvents (219). [Pg.389]

Thioethers are neutral stable compounds that can be freed from acidic and basic impurities as described for disulfides. They can be recrystallised from organic solvents and distilled without decomposition. They have sulfurous odours. [Pg.69]

For a broad review of substituent and solvent effects on acidity and basicity, see R. W. Taft, Prog. Phys. Org. Chem. 14 247 (1983). [Pg.247]

Absorption and emission spectra of six 2-substituted imidazo[4,5-/]quinolines (R = H, Me, CH2Ph, Ph, 2-Py, R = H CH2Ph, R = Ph) were studied in various solvents. These studies revealed a solvent-independent, substituent-dependent character of the title compounds. They also exhibited bathochromic shifts in acidic and basic solutions. The phenyl group in the 2-position is in complete conjugation with the imidazoquinoline moiety. The fluorescence spectra of the compounds exhibited a solvent dependency, and, on changing to polar solvents, bathochromic shifts occur. Anomalous bathochromic shifts in water, acidic solution, and a new emission band in methanol are attributed to the protonated imidazoquinoline in the excited state. Basic solutions quench fluorescence (87IJC187). [Pg.239]

The acidic and basic properties of aqueous solutions are dependent on an equilibrium that involves the solvent, water. The reaction involved can be regarded as a Bransted-Lowry acid-base reaction in which the H20 molecule shows its amphiprotic nature ... [Pg.354]

In cases where it proves impossible to find a suitable indicator (and this will occur when dealing with strongly coloured solutions) then titration may be possible by an electrometric method such as conductimetric, potentiometric or amperometric titration see Chapters 13-16. In some instances, spectrophotometric titration (Chapter 17) may be feasible. It should also be noted that ifit is possible to work in a non-aqueous solution rather than in water, then acidic and basic properties may be altered according to the solvent chosen, and titrations which are difficult in aqueous solution may then become easy to perform. This procedure is widely used for the analysis of organic materials but is of very limited application with inorganic substances and is discussed in Sections 10.19-10.21. [Pg.281]

Hydroxy-l-alkenyl diisopropylcarbamates 2 (X = OCb), in this respect, occupy a medium position since they are stable in strongly acidic and basic protic solvents. For deblocking vinyl carbamates, the presence of catalytic amounts of mercuric or palladium(II) salts is required. Due to this stability, several reactions of homoallylic alcohols, proceeding with high diastereo-selectivity, e g., epoxidation, are applicable in order to introduce further hetero-substituents. [Pg.227]

Ed, The Chemistry of Non-Aqueous Solvents, Vol II, Acidic and Basic Solvents , Academic Press, NY (1967) 151 -89 33) Urbanski 1 ... [Pg.280]

Chloramine-B (CAB, PhS02NClNa) and chloramine-T (CAT, p-Me-C6H4S02NClNa) have also been used for the oxidation of sulphoxides107-115. The required sulphone is produced after initial attack by the sulphoxide sulphur atom on the electrophilic chlorine-containing species, forming a chlorosulphonium intermediate as shown in equation (34). These reactions take place at room temperature, in water and aqueous polar solvents such as alcohols and dioxane, in both acidic and basic media. In alkaline solution the reaction is slow and the rate is considerably enhanced by the use of osmium tetroxide as a catalyst115. [Pg.981]

Oxime carbamates have high polarity and solubility in water and are relatively chemically and thermally unstable. They are relatively stable in weakly acidic to neutral media (pH 4-6) but unstable in strongly acidic and basic media. Rapid hydrolysis occurs in strongly basic aqueous solutions (pH > 9) to form the parent oxime/alcohol and methylamine, which is enhanced at elevated temperature. Additionally, oxime carbamates are, generally, stable in most organic solvents and readily soluble in acetone, methanol, acetonitrile, and ethyl acetate, with the exception of aliphatic hydrocarbons. Furthermore, most oxime carbamates contain an active -alkyl (methyl) moiety that can be easily oxidized to form the corresponding sulfoxide or sulfone metabolites. [Pg.1144]

The extraction time has been observed to vary linearly with polymer density and decreases with smaller particle size [78,79]. The extraction time varies considerably for different solvents and additives. Small particle sizes are often essential to complete the extraction in reasonable times, and the solvents must be carefully selected to swell the polymer to dissolve the additives quantitatively. By powdering PP to 50 mesh size, 98 % extraction of BHT can be achieved by shaking at room temperature for 30 min with carbon disulfide. With isooctane the same recovery requires 125 min Santonox is extractable quantitatively with iso-octane only after 2000mm. The choice of solvent significantly influences the duration of the extraction. For example talc filled PP can be extracted in 72 h with chloroform, but needs only 24 h with THF [80]. pH plays a role in extracting weakly acidic and basic organic solutes, but is rarely addressed explicitly as a parameter. [Pg.61]

With regard to this classification, Bronsted made the following very important remark "Solvents of class 4, on account of their comparatively slight acidic and basic character, are the most nearly similar to class 8 in their... [Pg.268]

According to the Arrhenius theory of acids and bases, the acidic species in water is the solvated proton (which we write as H30+). This shows that the acidic species is the cation characteristic of the solvent. In water, the basic species is the anion characteristic of the solvent, OH-. By extending the Arrhenius definitions of acid and base to liquid ammonia, it becomes apparent from Eq. (10.3) that the acidic species is NH4+ and the basic species is Nl I,. It is apparent that any substance that leads to an increase in the concentration of NH4+ is an acid in liquid ammonia. A substance that leads to an increase in concentration of NH2- is a base in liquid ammonia. For other solvents, autoionization (if it occurs) leads to different ions, but in each case presumed ionization leads to a cation and an anion. Generalization of the nature of the acidic and basic species leads to the idea that in a solvent, the cation characteristic of the solvent is the acidic species and the anion characteristic of the solvent is the basic species. This is known as the solvent concept. Neutralization can be considered as the reaction of the cation and anion from the solvent. For example, the cation and anion react to produce unionized solvent ... [Pg.333]

The transfer of a proton between an acidic and a basic group within the same molecule is often more complex than the process shown in (1). The proton may be transferred along hydrogen-bonded solvent molecules between the acidic and basic groups if these are too remote to permit formation of an intramolecular hydrogen bond. Alternatively, two inter-molecular proton transfers with an external acid or base may be necessary. Tautomerisation of oxygen and nitrogen acids and bases (3) will be described in Section 6. The reactions are usually quite rapid and fast reaction... [Pg.115]

With strata-X, procainamide elutes off under any conditions including >25% methanol in the solvent. With strata-X-CW, the drug can be eluted off under both acidic and basic conditions with >40% methanol content in the solvent. As with strata-X, the drug is eluted off under acidic or basic conditions with >50% methanol using strata-X-AW. Overall, strata-X-C is the best option for procainamide from a biological matrix. [Pg.28]

The Forster cycle method is quite simple, which explains why it has been extensively used. One of the important features of this cycle is that it can be used even in cases where the equilibrium is not established within the excited-state lifetime. However, use of the Forster cycle is difficult or questionable when (i) two absorption bands overlap (ii) the electronic levels invert during the excited-state lifetime (usually in a solvent-assisted relaxation process) (iii) the excited acidic and basic forms are of different orbital origins (electronic configuration or state symmetry) and (iv) the changes in dipole moment upon excitation are different for the acidic and basic forms. [Pg.105]

Hydrogen bond donor solvents are simply those containing a hydrogen atom bound to an electronegative atom. These are often referred to as protic solvents, and the class includes water, carboxylic acids, alcohols and amines. For chemical reactions that involve the use of easily hydrolysed or solvolysed compounds, such as AICI3, it is important to avoid protic solvents. Hydrogen bond acceptors are solvents that have a lone pair available for donation, and include acetonitrile, pyridine and acetone. Kamlet-Taft a and ft parameters are solvatochromic measurements of the HBD and HBA properties of solvents, i.e. acidity and basicity, respectively [24], These measurements use the solvatochromic probe molecules V, V-die lliy I -4-n i in tan iline, which acts as a HBA, and 4-nitroaniline, which is a HBA and a HBD (Figure 1.17). [Pg.24]

It should be kept in mind that the terms acidity and basicity of the solvent have to be intended not only according to the Lewis concept (electrophilic vs. nucleophilic properties), but also according to the Bronsted concept (proton donor vs. proton acceptors), or to the hydrogen bonding capacity (hydrogen bond donor vs. hydrogen bond acceptor). [Pg.592]

GC-MS spectral analysis. Subsequent extraction of the basified aqueous phase removed another 14% of the aqueous 1 C which contained 10 products as determined by the TLC analysis using solvents (j) and (k). HMI, which accounted for 58.8% of the extract, was the major component of this extract as determined by TLC cochromatography in solvents (j) and (k). Five other unidentified products were still present in the aqueous phase (TLC solvent (h)) after neutral, acidic and basic extraction. [Pg.116]


See other pages where Solvents acidity and basicity is mentioned: [Pg.9]    [Pg.266]    [Pg.9]    [Pg.266]    [Pg.37]    [Pg.478]    [Pg.25]    [Pg.14]    [Pg.351]    [Pg.758]    [Pg.199]    [Pg.54]    [Pg.263]    [Pg.640]    [Pg.441]    [Pg.87]    [Pg.381]    [Pg.389]    [Pg.1222]    [Pg.1240]    [Pg.70]    [Pg.12]   
See also in sourсe #XX -- [ Pg.334 ]




SEARCH



Acidic-basic

Acidities and Basicities

Acidity and basicity

Acidity/basicity

Acids solvents

Basicity, solvent, and

Solvent acidity, and

Solvents acidic

Solvents acidity

Solvents basic

Solvents basicity

© 2024 chempedia.info