Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubilizate polarity

Ionic, polar and amphiphilic solubilizates are forced to reside for relatively long times in very small compartments within the micelle (intramicellar confinement, compart-mentalization) involving low translational diffusion coefficients and enhancement of correlation times. [Pg.475]

The importance of the material exchange process can hardly be overemphasized since it is the mechanism whereby the equUibrium miceUar size and polydispersity are reached and maintained, the reversed micelles of ionic surfactants become charged, polar and amphiphilic solubilizates are transported, and hydrophilic reactants can come in... [Pg.479]

The different location of polar and amphiphilic molecules within water-containing reversed micelles is depicted in Figure 6. Polar solutes, by increasing the micellar core matter of spherical micelles, induce an increase in the micellar radius, while amphiphilic molecules, being preferentially solubihzed in the water/surfactant interface and consequently increasing the interfacial surface, lead to a decrease in the miceUar radius [49,136,137], These effects can easily be embodied in Eqs. (3) and (4), aUowing a quantitative evaluation of the mean micellar radius and number density of reversed miceUes in the presence of polar and amphiphilic solubilizates. Moreover it must be pointed out that, as a function of the specific distribution law of the solubihzate molecules and on a time scale shorter than that of the material exchange process, the system appears polydisperse and composed of empty and differently occupied reversed miceUes [136],... [Pg.485]

There is considerable interest in establishing the location within a micelle of the solubilized component. As we have seen, the environment changes from polar water to nonpolar hydrocarbon as we move radially toward the center of a micelle. While the detailed structure of the various zones is disputed, there is no doubt that this gradient of polarity exists. Accordingly, any experimental property that is sensitive to the molecular environment can be used to monitor the whereabouts of the solubilizate in the micelle. Spectroscopic measurements are ideally suited for determining the microenvironment of solubilizate molecules. This is the same principle used in Section 8.3, in which the ultraviolet spectrum of solubilized benzene was used to explore the solvation of micelles. Here we take the hydration for granted and use similar methods to locate the solubilizate. [Pg.376]

A nonpolar solubilizate such as hexane penetrates deeply into such a micelle, and is held in the nonpolar interior hydrocarbon environment, while a solubilizate such as an alcohol, which has both polar and nonpolar ends, usually penetrates less, with its polar end at or near the polar surface of the micelle. The vapor pressure of hexane in aqueous solution is diminished by the presence of sodium oleate m a manner analogous to that cited above for systems in nonpolar solvents. A 5% aqueous solution of potassium oleate dissolves more than twice the volume of propylene at a given pressure than does pure water. Dnnethylaminoazobenzene, a water-insoluble dye, is solubilized to the extent of 125 mg per liter by a 0.05 M aqueous solution of potassium myristate. Bile salts solubilize fatty acids, and this fact is considered important physiologically. Cetyl pyridinium chloride, a cationic salt, is also a solubilizing agent, and 100 ml of its A/10 solution solubilizes about 1 g of methyl ethyl-butyl either m aqueous solution. [Pg.1521]

In the ternary system NaCg-decanol-water the influence of the polar/apolar solubilizate on the formation of micelles and mesoaggregates can be seen clearly (Figure 9). Quite often the following rules of thumb for the influence of the solubilizate can be used ... [Pg.31]

By comparing with corresponding spectra of ion pairs in different solvents one obtains information on the local environment at the micellar surface73. (The polarity was expressed in terms of a so-called effective dielectric constant). Amphiphiles with a benzene ring also show an UV absorption74-76. UV spectra of solubilized species like benzene, naphthalene and pyrene have been extensively studied and compared with spectra of the compound in reference solvents to provide an estimate of the polarity in the vicinity of the solubilizate. [Pg.21]

The accepted rules for solubilizate position and the factors influencing solubilization are derived from many observations (Mukerjee, 1979 Sepulveda, 1974) (a) compounds such as acids, amines and alcohols with polar groups are located in the micellar soft-core, and nonpolar hydrocarbon groups at the micellar surface (b) nonpolar aliphatic hydrocarbons and aromatic hydrocarbons are located in the outer micellar surface. [Pg.73]

Solubilization is the formation of a thermodynamically stable, isotropic solution of a substance (the solubilizate), normally insoluble or slightly soluble in water, by the addition of a surfactant (the solublizer). The micelles of the surfactant cause solubilization of the substrate, producing an isotropic solution of the chemical. The solubilizate can be incorporated in the surfactant micelle in different ways, depending on the nature of the substrate and the surfactant micelles. For hydrophobic substrates, the molecules become incorporated in the hydrocarbon core of the micelle. With more polar substrates, the molecules may become incorporated in the hydrophilic PEO chains of the micelle or they may be simply adsorbed at the micelle surface. [Pg.515]

The nature of the solubilizate as well as that of the solubilizer and the solvent, the presence of additional polar or non-polar substrates, and... [Pg.280]

Lawrence (1937) first noted that the site of incorporation of solubilized molecules depended on their relative hydrophobic and hydrophilic tendencies. The solubilizate may be entrapped in the hydrocarbon core of the micelle, be oriented radially in the micelle with its polar group buried (deep penetration) or near the surface (short penetration), or be adsorbed on the surface of the micelle. Additionally, for non-ionic surfactants, incorporation of the solubilizate can occur in the polyoxyethylene shell of the surfactant. Fig. 3 illustrates several modes of solubilizate incorporation. It is important to realize, however, that solubilization, like micelle formation, is not a static but a dynamic equilibrium process. [Pg.281]

The most important property of micelles in aqueous or nonaqueous solvents is their ability to dissolve substances that are insoluble in the pure solvent. In aqueous systems, nonpolar substances are solubilized in the interior of the micelles, whereas polar substances are solubilized in the micellar core in nonaqueous systems. This process is called solubilization. It can be defined as the formation of a thermodynamically stable isotropic solution with reduced activity of the solubilized material (8). It is useful to further differentiate between primary and secondary solubilization. The solubilization of water in tetrachloroethylene containing a surfactant is an example of primary solubilization. Secondary solubilization can be considered as an extension of primary solubilization because it refers to the solution of a substance in the primary solubilizate. [Pg.212]

In aqueous systems, non-polar additives such as hydrocarbons tend to be intimately associated with the hydrocarbon core of the micelle. Polar and semi-polar materials, such as fatty acids and alcohols are usually located in the palisades layer, the depth of penetration depending on the ratio of polar to non-polar structures in the solubilizate molecule. [Pg.3587]

A neutral molecule solubilized in the micelle can be located in several positions or microenvironments. As early as the 1930s it was suggested by Lawrence that the site of a solubilized molecule would be dependent on the hydrophobic/hydrophilic composition of the solubilizate. Two extremes are easily identified the core of the micelle providing a hydrocarbon-like microenvironment, and the palisade layer providing an aqueous or water-rich interfacial environment. It seems logical to assume, then, that nonpolar solutes like alkanes would prefer the micellar core and that polar molecules would be anchored at the surface. However, this is an oversimplification available data tend to contradict it. First, the solubility of alkanes in micelles is significantly lower than expected if compared to solubility in hydrocarbon solvents. Second, the size of a micelle is normally such that part of the solute would be close to the surface at any time. Sepulveda et al. state that for SDS micelles at least half of the solute will be within 4 to 5 A of the surface. We should also consider the timescale of the experiments, as the timescale for intramicellar migration is short. The rate constants of entry and exit of molecules to and from micelles is of the order 1(F and... [Pg.383]

In concentrated aqueous surfactant solutions, although the shape of the micelles may be very different from that in dilute solution, the locus of solubilization for a particular type of solubilizate appears to be analogous to that in dilute solution that is, polar molecules are solubilized mainly in the outer regions of the micellar structures, whereas nonpolar solubilizates are contained in the inner portions. [Pg.181]

The effect of the curvation of the micelle on solubilization capacity has been pointed out by Mukerjee (1979, 1980). The convex surface produces a considerable Laplace pressure (equation 7.1) inside the micelle. This may explain the lower solubilizing power of aqueous micellar solutions of hydrocarbon-chain surfactants for hydrocarbons, compared to that of bulk phase hydrocarbons, and the decrease in solubilization capacity with increase in molar volume of the solubilizate. On the other hand, reduction of the tension or the curvature at the micellar-aqueous solution interface should increase solubilization capacity through reduction in Laplace pressure. This may in part account for the increased solubilization of hydrocarbons by aqueous solutions of ionic surfactants upon the addition of polar solubilizates or upon the addition of electrolyte. The increase in the solubilization of hydrocarbons with decrease in interfacial tension has been pointed out by Bourrel (1983). [Pg.182]


See other pages where Solubilizate polarity is mentioned: [Pg.476]    [Pg.486]    [Pg.10]    [Pg.209]    [Pg.305]    [Pg.377]    [Pg.388]    [Pg.32]    [Pg.32]    [Pg.283]    [Pg.24]    [Pg.50]    [Pg.57]    [Pg.57]    [Pg.58]    [Pg.34]    [Pg.15]    [Pg.48]    [Pg.281]    [Pg.283]    [Pg.285]    [Pg.286]    [Pg.289]    [Pg.164]    [Pg.164]    [Pg.165]    [Pg.166]    [Pg.187]    [Pg.180]    [Pg.181]    [Pg.181]    [Pg.183]    [Pg.183]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



Solubilizate

© 2024 chempedia.info