Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Translation diffusion coefficient

As compared to HPLC, cSFC shows higher efficiency, universal and selective detection, minimal derivatisation for separation and the ability to separate thermally labile organic compounds. Often, cSFC analyses are also considerably faster. This arises because higher mobile phase diffusion coefficients translate directly into higher optimum velocities. However, sensitivity, detection dynamic range and sample capacity... [Pg.207]

Higher diffusion coefficients translate directly to higher speed chromatography as indicated in the van Deemter equation. Figure 2 is a van Deemter plot of plate height (HETP) versus linear velocity for both... [Pg.4569]

Dielectric constant Rotational diffusion coefficient Translational diffusion coefficient Mean value in the moment-ratio notation Electric field of light Electric field Geometric term in OPC Conductivity... [Pg.346]

Sun Y-P and Saltiel J 1989 Application of the Kramers equation to stiibene photoisomerization in / -alkanes using translational diffusion coefficients to define microviscosity J. Phys. Chem. 93 8310-16... [Pg.867]

In a liquid that is in thermodynamic equilibrium and which contains only one chemical species, the particles are in translational motion due to thermal agitation. The term for this motion, which can be characterized as a random walk of the particles, is self-diffusion. It can be quantified by observing the molecular displacements of the single particles. The self-diffusion coefficient is introduced by the Einstein relationship... [Pg.162]

The hydrodynamic radius reflects the effect of coil size on polymer transport properties and can be determined from the sedimentation or diffusion coefficients at infinite dilution from the relation Rh = kBT/6itri5D (D = translational diffusion coefficient extrapolated to zero concentration, kB = Boltzmann constant, T = absolute temperature and r s = solvent viscosity). [Pg.81]

Dynamic light scattering (DLS) Translational diffusion coefficient, hydrodynamic or Stokes radius branching information (when Rh used with Rg) Fixed 90° angle instruments not suitable for polysaccharides. Multi-angle instrument necessary. [3]... [Pg.213]

In this relation a(r, t) is the experimentally observed signal, s represents random noise, axi r) represents the time invariant systematic noise and aRi(f) the radial invariant systematic noise Schuck [42] and Dam and Schuck [43] describe how this systematic noise is ehminated. x is the normahsed concentration at r and t for a given sedimenting species of sedimentation coefficient 5 and translational diffusion coefficient D it is normalised to the initial loading concentration so it is dimensionless. [Pg.223]

It is possible to get molecular weight from the sedimentation coefficient if we assiune a conformation or if we combine with other measurements, namely the translational diffusion coefficient via the Svedberg equation [50]... [Pg.225]

The translational diffusion coefficient in Eq. 11 can in principle be measured from boimdary spreading as manifested for example in the width of the g (s) profiles although for monodisperse proteins this works well, for polysaccharides interpretation is seriously complicated by broadening through polydispersity. Instead special cells can be used which allow for the formation of an artificial boundary whose diffusion can be recorded with time at low speed ( 3000 rev/min). This procedure has been successfully employed for example in a recent study on heparin fractions [5]. Dynamic fight scattering has been used as a popular alternative, and a good demonstra-... [Pg.225]

A number of bulk simulations have attempted to study the dynamic properties of liquid crystal phases. The simplest property to calculate is the translational diffusion coefficient D, that can be found through the Einstein relation, which applies at long times t ... [Pg.58]

Ionic, polar and amphiphilic solubilizates are forced to reside for relatively long times in very small compartments within the micelle (intramicellar confinement, compart-mentalization) involving low translational diffusion coefficients and enhancement of correlation times. [Pg.475]

We have applied FCS to the measurement of local temperature in a small area in solution under laser trapping conditions. The translational diffusion coefficient of a solute molecule is dependent on the temperature of the solution. The diffusion coefficient determined by FCS can provide the temperature in the small area. This method needs no contact of the solution and the extremely dilute concentration of dye does not disturb the sample. In addition, the FCS optical set-up allows spatial resolution less than 400 nm in a plane orthogonal to the optical axis. In the following, we will present the experimental set-up, principle of the measurement, and one of the applications of this method to the quantitative evaluation of temperature elevation accompanying optical tweezers. [Pg.139]

Under the condition that the Stokes-Einstein model holds, the translational diffusion coefficient, D, can be represented by Eq. (8.3). the diffusion time, Xd, obtained through the analysis is given by Eq. (8.4). [Pg.141]

PGSE-NMR provides direct information on the translational mobility of a liquid medium capable of swelling a given CFP. The self-diffusion coefficient of the swelling agent is found to be related to the nanoporosity of the matrix as determined from ISEC and to the rotational correlation time of a suitable paramagnetic probe (ESR) [22]. [Pg.202]

To summarize, there is a sizable and self-consistent body of data indicating that rotational and translational mobility of molecules inside swollen gel-type CFPs are interrelated and controlled mainly by viscosity. Accordingly, T, self-diffusion and diffusion coefficients bear the same information (at least for comparative purposes) concerning diffusion rates within swollen gel phases. However, the measurement of r is by far the most simple (it requires only the collection of a single spectrum). For this reason, only r values have been used so far in the interpretation of diffusion phenomena in swollen heterogeneous metal catalysts supported on CFPs [81,82]. [Pg.222]

Calibration of the MC time step in the simulation on the 2nnd lattice can be achieved by comparison of rr or DN with the results from a conventional MD simulation (as in the second and third columns of Table 4.8), or via comparison with a translational diffusion coefficient obtained from experiment with a... [Pg.110]

NMR Self-Diffusion of Desmopressin. The NMR-diffusion technique (3,10) offers a convenient way to measure the translational self-diffusion coefficient of molecules in solution and in isotropic liquid crystalline phases. The technique is nonperturbing, in that it does not require the addition of foreign probe molecules or the creation of a concentration-gradient in the sample it is direct in that it does not involve any model dependent assumptions. Obstruction by objects much smaller than the molecular root-mean-square displacement during A (approx 1 pm), lead to a reduced apparent diffusion coefficient in equation (1) (10). Thus, the NMR-diffusion technique offers a fruitful way to study molecular interactions in liquids (11) and the phase structure of liquid crystalline phases (11,12). [Pg.256]

Zi(Air, x) and 7)(N2, x) are spin-lattice relaxation times of nitroxides in samples equilibrated with atmospheric air and nitrogen, respectively. Note that W(x) is normalized to the sample equilibrated with the atmospheric air. W(x) is proportional to the product of the local translational diffusion coefficient D(x) and the local concentration C(x) of oxygen at a depth x in the membrane, which is in equilibrium with the atmospheric air ... [Pg.197]

In contrast to normal diffusion, Ar2n does not grow linearly but with the square root of time. This may be considered the result of superimposing two random walks. The segment executes a random walk on the random walk given by the chain conformation. For the translational diffusion coefficient DR = kBT/ is obtained DR is inversely proportional to the number of friction-performing segments. [Pg.14]


See other pages where Translation diffusion coefficient is mentioned: [Pg.58]    [Pg.348]    [Pg.58]    [Pg.348]    [Pg.397]    [Pg.122]    [Pg.394]    [Pg.1827]    [Pg.199]    [Pg.291]    [Pg.491]    [Pg.164]    [Pg.214]    [Pg.141]    [Pg.142]    [Pg.221]    [Pg.608]    [Pg.608]    [Pg.776]    [Pg.814]    [Pg.89]    [Pg.108]    [Pg.109]    [Pg.39]    [Pg.379]    [Pg.339]    [Pg.340]    [Pg.200]   
See also in sourсe #XX -- [ Pg.227 , Pg.229 , Pg.234 ]

See also in sourсe #XX -- [ Pg.227 , Pg.229 , Pg.234 ]




SEARCH



Diffusion, translational

Diffusivity translational

Translation coefficients

Translation diffusion

Translational coefficient

Translational diffusion coefficient

© 2024 chempedia.info