Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubility from Solid

Many approaches to determine thermodynamic solubility in drug discovery have focused on miniaturizing the classic shake-flask method with solid samples manually weighed and dispensed into 96-well plates or 96-vial arrays [32-34]. The 96-well format enables the use of liquid handling robots to improve throughput. As with the standard shake-flask method, aqueous buffer is added and the solution is agitated for a minimum of 24 h prior to plate filtration or centrifugation to remove the supernatant, which is then analyzed by HPLC-UV or direct UV. [Pg.21]

Drug name Crystalline solubility (pM) Amorphous solubility (pM) Solubility ratio (amorphous/ crystalline) [Pg.22]

Thermodynamic Solubility Assays with Solid-State Characterization [Pg.22]

More recently in discovery there has been a trend toward developing high-throughput thermodynamic solubility assays, which incorporate a solid-state assessment at the end of the period of agitation. This assessment aids interpretation of the solubility data and is an important consideration when relating the solubility data to molecular structure. Solid-state characterization methods include the use of PLM [16], microscopic analysis [34], PXRD [32, 33], and Raman microscopy [22]. With all these [Pg.22]

24 2 Aqueous Solubility in Drug Discovery Chemistry, DMPK,and Biological Assays [Pg.24]


An aliquot of 30 pL is transferred in 250 pi buffer. The solution is shaken for 24 hours at 25 °C. If precipitation occurs the sample is centrifuged and filtrated. The following procedure is the same as for the solubility from solids described above. The achieved throughput is mainly limited by the gradient time. Pan et al. investigated the effect of filtration on the quantification of solubility. They recommend poly(tetrafluoroethylene) (PTFE) as filter material of choice. In their compound set they found 98% recovery after filtration. [Pg.400]

The chemical potential of a curved surface is extremely critical in ceramic processing. It detemiines reactivity, tlie solubility of a solid in a liquid, tire rate of liquid evaporation from solid surfaces, and material transport during sintering. [Pg.2761]

The process of extraction with solvents is generally employed either for the isolation of dissolved substances from solutions or from solid mixtures or for the removal of undesired soluble impurities from mixtures. The latter process is usually termed washing. [Pg.44]

Minerals and Ash. The water-soluble extract solids which iafuse from tea leaves contain 10—15% ash. The tea plant has been found to be rich in potassium (24) and contains significant quantities of calcium, magnesium (25), and aluminum (26). Tea beverages are also a significant source of fluoride (27), owing in part to the uptake of aluminum fluoride from soils (28,29). [Pg.368]

An application of Eq. (11) is shown in Fig. 2, which gives the solubility of solid carbon dioxide in compressed air at a low temperature. The solubility is calculated from the equation of equilibrium... [Pg.146]

An application of Eq. (19) is shown in Fig. 4, which gives the solubility of solid naphthalene in compressed ethylene at three temperatures slightly above the critical temperature of ethylene. The curves were calculated from the equilibrium relation given in Eq. (12). Also shown are the experimental solubility data of Diepen and Scheffer (D4, D5) and calculated results based on the ideal-gas assumption (ordinate scale is logarithmic and it is evident that very large errors are incurred when corrections for gas-phase nonideality are neglected. [Pg.151]

Solid samples are generally treated in one of two ways. If completely soluble, they can be dissolved directly and completely in a suitable solvent. Alternatively, if the samples contain insoluble materials that are of no interest, then they can be extracted with a selected solvent to obtain the relevant compounds in solution. The extract can be subsequently filtered or centrifuged to remove any unwanted substances that make up the sample matrix. The procedure will differ, depending on the amount of the substances present that are germane to the analysis. The preparation of samples for LC analysis from solid... [Pg.212]

To date most of the work which has been done with supercritical fluid extraction has concentrated on the extraction of analytes from solid matrices or liquids supported on an inert solid carrier matrix. The extraction of aqueous matrices presents particular problems [276-278]. The co-extraction of water causes problems with restrictor plugging, column deterioration, and phase separation if a nonpolar solvent is used for sample collection. Also, carbon dioxide isay have limited extraction efficiency for many water soluble compounds. [Pg.411]

Essentially, extraction of an analyte from one phase into a second phase is dependent upon two main factors solubility and equilibrium. The principle by which solvent extraction is successful is that like dissolves like . To identify which solvent performs best in which system, a number of chemical properties must be considered to determine the efficiency and success of an extraction [77]. Separation of a solute from solid, liquid or gaseous sample by using a suitable solvent is reliant upon the relationship described by Nemst s distribution or partition law. The traditional distribution or partition coefficient is defined as Kn = Cs/C, where Cs is the concentration of the solute in the solid and Ci is the species concentration in the liquid. A small Kd value stands for a more powerful solvent which is more likely to accumulate the target analyte. The shape of the partition isotherm can be used to deduce the behaviour of the solute in the extracting solvent. In theory, partitioning of the analyte between polymer and solvent prevents complete extraction. However, as the quantity of extracting solvent is much larger than that of the polymeric material, and the partition coefficients usually favour the solvent, in practice at equilibrium very low levels in the polymer will result. [Pg.61]

Principles and Characteristics Supercritical fluid extraction uses the principles of traditional LSE. Recently SFE has become a much studied means of analytical sample preparation, particularly for the removal of analytes of interest from solid matrices prior to chromatography. SFE has also been evaluated for its potential for extraction of in-polymer additives. In SFE three interrelated factors, solubility, diffusion and matrix, influence recovery. For successful extraction, the solute must be sufficiently soluble in the SCF. The timescale for diffusion/transport depends on the shape and dimensions of the matrix particles. Mass transfer from the polymer surface to the SCF extractant is very fast because of the high diffusivity in SCFs and the layer of stagnant SCF around the solid particles is very thin. Therefore, the rate-limiting step in SFE is either... [Pg.85]

Various models of SFE have been published, which aim at understanding the kinetics of the processes. For many dynamic extractions of compounds from solid matrices, e.g. for additives in polymers, the analytes are present in small amounts in the matrix and during extraction their concentration in the SCF is well below the solubility limit. The rate of extraction is then not determined principally by solubility, but by the rate of mass transfer out of the matrix. Supercritical gas extraction usually falls very clearly into the class of purely diffusional operations. Gere et al. [285] have reported the physico-chemical principles that are the foundation of theory and practice of SCF analytical techniques. The authors stress in particular the use of intrinsic solubility parameters (such as the Hildebrand solubility parameter 5), in relation to the solubility of analytes in SCFs and optimisation of SFE conditions. [Pg.85]

Liquids can be extracted from solids by leaching. As the name implies, the soluble liquid contained in a solid is leached out by contacting the solid with a suitable solvent. A principal application of leaching is in the extraction of valuable oils from nuts and seeds such as, palm oil and rape seed oil. [Pg.447]

Fig. 23 Saliva and serum IgA (primary and secondary) response following orally administered soluble antigen Streptococcus mutans cell wall extract (open circles, soluble antigen solid circles, liposome-encapsulated material) (phosphatidylcholine, phosphatidic acid, cholesterol). (From Ref. 277). Fig. 23 Saliva and serum IgA (primary and secondary) response following orally administered soluble antigen Streptococcus mutans cell wall extract (open circles, soluble antigen solid circles, liposome-encapsulated material) (phosphatidylcholine, phosphatidic acid, cholesterol). (From Ref. 277).
Dang et al. (1994) observed that the experimentally determined solubility lines for Zn2+ in 14 soil solutions from southern Queensland with soil pH from 7.45-8.98 and 0.08-2.07% CaC03 were not undersaturated with respect to the solubility of any known mineral form of Zn. Therefore, they suggested that Zn2+ activity was mainly controlled by adsorption-desorption reactions in these soils. Similar observation on solubility of Cr(VI) in arid soils was reported by Rai et al. (1989). In the absence of a solubility controlling solid phase, Cr(VI) aqueous concentrations under slightly alkaline conditions may be primarily controlled by adsorption/desorption reactions (Rai et al., 1989). Chromuim(VI) is adsorbed by iron and aluminum oxides, and kaolinite and its adsorption decreases with increasing pH. [Pg.102]

Neurotoxin obtained from the Formosan cobra (Naja naja atra). It is a relatively heat stable, water soluble, crystalline solid. [Pg.472]

B. 4-Phenyl-5-anilino-l,2,3-triazole. Six grams (0.025 mole) of 1,4-diphenyl-5-amino-l,2,3-triazole is dissolved in 20 g. of dry pyridine (distilled from solid sodium hydroxide) and heated under reflux for 24 hours (Note 6). The reaction mixture (Note 7) is poured into 11. of ice water. The product separates as a slightly yellowish milky oil which is converted to white needle-like crystals by stirring the mixture and scratching the beaker with a glass rod. The product is collected by suction filtration, washed with water, suction-dried, and recrystallized from aqueous ethanol (Note 8). The yield is 5.5-5.6 g. (92-93%) of fine white needle-like crystals, m.p. 167-169° (Note 9), soluble in hot water and ether, but difficultly soluble in benzene. [Pg.72]

The preparation of aqueous solutions from solids is usually performed after the sample has been ground to a powder of uniform size. Sometimes, samples can be only sparingly soluble in water and therefore organic solvents may be used to dissolve the sample. Organic solvents can increase the sensitivities of atomic spectrometric analyses as a result of increases in the efficiencies of the nebulization of the analyte solutions. When organic solvents are used to dissolve samples non-selective ligands should be added to complex ionic species that would otherwise be insoluble in the organic solvent. [Pg.247]

Very few generalized computer-based techniques for calculating chemical equilibria in electrolyte systems have been reported. Crerar (47) describes a method for calculating multicomponent equilibria based on equilibrium constants and activity coefficients estimated from the Debye Huckel equation. It is not clear, however, if this technique has beep applied in general to the solubility of minerals and solids. A second generalized approach has been developed by OIL Systems, Inc. (48). It also operates on specified equilibrium constants and incorporates activity coefficient corrections for ions, non-electrolytes and water. This technique has been applied to a variety of electrolyte equilibrium problems including vapor-liquid equilibria and solubility of solids. [Pg.634]

Henry s Law constant (i.e., H, see Sect. 2.1.3) expresses the equilibrium relationship between solution concentration of a PCB isomer and air concentration. This H constant is a major factor used in estimating the loss of PCBs from solid and water phases. Several workers measured H constants for various PCB isomers [411,412]. Burkhard et al. [52] estimated H by calculating the ratio of the vapor pressure of the pure compound to its aqueous solubility (Eq. 13, Sect. 2.1.3). Henry s Law constant is temperature dependent and must be corrected for environmental conditions. The data and estimates presented in Table 7 are for 25 °C. Nicholson et al. [413] outlined procedures for adjusting the constants for temperature effects. [Pg.283]

The new soluble catalysts offer a solution to these three problems. First, the smaller size of the active site, and associated molecules, allows the growing chains to take advantage of a natural tendency for the growing polymer chain to form a regular helical structure (in comparison to polymers formed from solid state catalysts). [Pg.150]

Equation 10.27 is generally known as Freundlich equation. Equation 10.27 with concentration replaced by pressure was also used to describe the adsorption isotherms of gases on solids, suggesting the incorrect idea that adsorption from solution by a solid could be paralleled with gas or vapor adsorption on the same adsorbents. Whereas in some cases the restriction to dilute solutions was imposed by the solubility of solids (e.g., benzoic acid in water or stearic acid in benzene) it was not imposed on the investigation of mixtures of completely miscible liquids, e.g., acetic acid in water. [Pg.287]


See other pages where Solubility from Solid is mentioned: [Pg.21]    [Pg.21]    [Pg.2772]    [Pg.121]    [Pg.496]    [Pg.114]    [Pg.256]    [Pg.160]    [Pg.333]    [Pg.151]    [Pg.68]    [Pg.223]    [Pg.377]    [Pg.604]    [Pg.98]    [Pg.126]    [Pg.603]    [Pg.518]    [Pg.266]    [Pg.173]    [Pg.331]    [Pg.121]    [Pg.232]    [Pg.665]    [Pg.665]    [Pg.140]    [Pg.298]    [Pg.493]   


SEARCH



Soluble solids

© 2024 chempedia.info